Что такое тождество и как его решать. Понятие тождества

💖 Нравится? Поделись с друзьями ссылкой

Эта статья дает начальное представление о тождествах . Здесь мы определим тождество, введем используемое обозначение, и, конечно же, приведем различные примеры тождеств.

Навигация по странице.

Что такое тождество?

Логично начать изложение материала с определения тождества . В учебнике Макарычева Ю. Н. алгебра для 7 классов определение тождества дается так:

Определение.

Тождество – это равенство, верное при любых значениях переменных; любое верное числовое равенство – это тоже тождество.

При этом автор сразу оговаривается, что в дальнейшем это определение будет уточнено. Это уточнение происходит в 8 классе, после знакомства с определением допустимых значений переменных и ОДЗ . Определение становится таким:

Определение.

Тождества – это верные числовые равенства, а также равенства, которые верны при всех допустимых значениях входящих в них переменных.

Так почему, определяя тождество, в 7 классе мы говорим про любые значения переменных, а в 8 классе начинаем говорить про значения переменных из их ОДЗ? До 8 класса работа ведется исключительно с целыми выражениями (в частности, с одночленами и многочленами), а они имеют смысл для любых значений входящих в них переменных. Поэтому в 7 классе мы и говорим, что тождество – это равенство, верное при любых значениях переменных. А в 8 классе появляются выражения, которые уже имеют смысл не для всех значений переменных, а только для значений из их ОДЗ. Поэтому тождествами мы начинаем называть равенства, верные при всех допустимых значениях переменных.

Итак, тождество – это частный случай равенства. То есть, любое тождество является равенством. Но не всякое равенство является тождеством, а только такое равенство, которое верно для любых значений переменных из их области допустимых значений.

Знак тождества

Известно, что в записи равенств используется знак равенства вида «=», слева и справа от которого стоят некоторые числа или выражения. Если к этому знаку добавить еще одну горизонтальную черту, то получится знак тождества «≡», или как его еще называют знак тождественного равенства .

Знак тождества обычно применяют лишь тогда, когда нужно особо подчеркнуть, что перед нами не просто равенство, а именно тождество. В остальных случаях записи тождеств по виду ничем не отличаются от равенств.

Примеры тождеств

Пришло время привести примеры тождеств . В этом нам поможет определение тождества, данное в первом пункте.

Числовые равенства 2=2 и являются примерами тождеств, так как эти равенства верные, а любое верное числовое равенство по определению является тождеством. Их можно записать как 2≡2 и .

Тождествами являются и числовые равенства вида 2+3=5 и 7−1=2·3 , так как эти равенства являются верными. То есть, 2+3≡5 и 7−1≡2·3 .

Переходим к примерам тождеств, содержащих в своей записи не только числа, но и переменные.

Рассмотрим равенство 3·(x+1)=3·x+3 . При любом значении переменной x записанное равенство является верным в силу распределительного свойства умножения относительно сложения, поэтому, исходное равенство является примером тождества. Вот еще один пример тождества: y·(x−1)≡(x−1)·x:x·y 2:y , здесь область допустимых значений переменных x и y составляют все пары (x, y) , где x и y - любые числа, кроме нуля.

А вот равенства x+1=x−1 и a+2·b=b+2·a не являются тождествами, так как существуют значения переменных, при которых эти равенства будут неверны. Например, при x=2 равенство x+1=x−1 обращается в неверное равенство 2+1=2−1 . Более того, равенство x+1=x−1 вообще не достигается ни при каких значениях переменной x . А равенство a+2·b=b+2·a обратится в неверное равенство, если взять любые различные значения переменных a и b . К примеру, при a=0 и b=1 мы придем к неверному равенству 0+2·1=1+2·0 . Равенство |x|=x , где |x| - переменной x , также не является тождеством, так как оно неверно для отрицательных значений x .

Примерами наиболее известных тождеств являются вида sin 2 α+cos 2 α=1 и a log a b =b .

В заключение этой статьи хочется отметить, что при изучении математики мы постоянно сталкиваемся с тождествами. Записи свойств действий с числами являются тождествами, например, a+b=b+a , 1·a=a , 0·a=0 и a+(−a)=0 . Также тождествами являются

Каждый школьник младших классов знает, что от перемены мест слагаемых сумма не изменяется, это утверждение верно и для множителей и произведения. То есть, согласно переместительному закону,
a + b = b + a и
a · b = b · a.

Сочетательный закон утверждает:
(a + b) + c = a + (b + c) и
(ab)c = a(bc).

А распределительный закон констатирует:
a(b + c) = ab + ac.

Мы вспомнили самые элементарные примеры применения данных математических законов, но все они распространяются на весьма широкие числовые области.

При любом значении переменной х значение выражений 10(х + 7) и 10х + 70 равны, так как для любых чисел выполняется распределительный закон умножения. О таких выражениях говорят, что они тождественно равны на множестве всех чисел.

Значения выражения 5х 2 /4а и 5х/4 в силу основного свойства дроби равны при любом значении х, кроме 0. Такие выражения называют тождественно равными на множестве всех чисел. Кроме 0.

Два выражения с одной переменной называются тождественно равными на множестве, если при любом значении переменной, принадлежащем этому множеству, их значения равны.

Аналогично определяют тождественное равенство выражений с двумя, трёмя и т.д. переменными на некотором множестве пар, троек и т.д. чисел.

Например, выражение 13аb и (13а)b тождественно равны на множестве всех пар чисел.

Выражение 7b 2 c/b и 7bc тождественно равны на множестве всех пар значений переменных b и c, в которых значение b не равно 0.

Равенства, в которых левая и правая части – выражения, тождественно равные на некотором множестве, называются тождествами на этом множестве.

Очевидно, что тождество на множестве обращается в истинное числовое равенство при всех значениях переменной (при всех парах, тройках и т.д. значений переменных), принадлежащих этому множеству.

Итак, тождество – это равенство с переменными, верное при любых значениях входящих в него переменных.

Например, равенство 10(х + 7) = 10х + 70 является тождеством на множестве всех чисел, оно обращается в истинное числовое равенство при любом значении х.

Истинные числовые равенства также называют тождествами. Например, равенство 3 2 + 4 2 = 5 2 – тождество.

В курсе математики приходится выполнять различные преобразования. Например, сумму 13х + 12х мы можем заменить выражением 25х. Произведение дробей 6а 2 /5 · 1/a заменим дробью 6а/5. Получается, что выражения 13х + 12х и 25х тождественно равны на множестве всех чисел, а выражения 6а 2 /5 · 1/a и 6а/5 тождественно равны на множестве всех чисел, кроме 0. Замену выражения другим выражением, тождественно равным ему на некотором множестве, называют тождественным преобразованием выражения на этом множестве.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

ЛЕКЦИЯ №3 Доказательство тождеств

Цель: 1. Повторить определения тождества и тождественно равных выражений.

2.Ввести понятие тождественного преобразования выражений.

3. Умножение многочлена на многочлен.

4. Разложение многочлена на множители способом группировки.

Пусть каждый день и каждый час

Нам новое добудет,

Пусть добрым будет ум у нас,

А сердце умным будет!

В математике существует множество понятий. Одно из них тождество.

Тождеством называют равенство, которое выполняется при всех значениях переменных, которые в него входят. Некоторые тождества мы уже знаем.

Например, все формулы сокращенного умножения являются тождествами.

Формулы сокращенного умножения

1. (a ± b )2 = a 2 ± 2ab + b 2,

2. (a ± b )3 = a 3 ± 3a 2b + 3ab 2 ± b 3,

3. a 2 - b 2 = (a - b )(a + b ),

4. a 3 ± b 3 = (a ± b )(a 2 ab + b 2).

Доказать тождество – это значит установить, что для любого допустимого значение переменные его левая часть равна правой части.

В алгебре существует несколько различных способов доказательства тождеств.

Способы доказательства тождеств

    Выполнить равносильные преобразования левой части тождества. Если в итоге получим правую часть, тогда тождество считается доказанным. Выполнить равносильные преобразования правой части тождества. Если в итоге получим левую часть, тогда тождество считается доказанным. Выполнить равносильные преобразования левой и правой части тождества. Если в результате получим одинаковый результат, тогда тождество считается доказанным. Из правой части тождества вычитаем левую часть. Производим над разностью равносильные преобразования. И если в итоге получаем нуль, то тождество считается доказанным. Из левой части тождества вычитают правую часть. Производим над разностью равносильные преобразования. И если в итоге получаем нуль, то тождество считается доказанным.

Следует так же помнить, что тождество справедливо лишь для допустимых значений переменных.

Как видите способов достаточно много. Какой способ выбрать в данном конкретном случае, зависит от тождества, которое вам необходимо доказать. По мере того, как вы будете доказывать различные тождества, придет и опыт в выборе способа доказательства.

Тождество - это уравнение, которое удовлетворяется тождественно, т. е. справедливо для любых допустимых значений входящих в него переменных. Доказать тождество - значит установить, что при всех допустимых значениях переменных его левая и правая части равны.
Способы доказывания тождества:
1. Выполняют преобразования левой части и получают в итоге правую часть.
2. Выполняют преобразования правой части и в итоге получают левую часть.
3. По отдельности преобразуют правую и левую части и получают и в первом и во втором случае одно и то же выражение.
4. Составляют разность левой и правой части и в результате её преобразований получают нуль.
Рассмотрим несколько простых примеров

Пример 1. Докажите тождество x·(a+b) + a·(b-x) = b·(a+x).

Решение.

Так как в правой части небольшое выражение, попытаемся преобразовать левую часть равенства.

x·(a+b) + a·(b-x) = x·a +x·b + a·b – a·x.

Приведем подобные слагаемые и вынесем общий множитель за скобку.

x·a + x·b + a·b – a·x = x·b + a·b = b·(a + x).

Получили что левая часть после преобразований, стала такой же как и правая часть. Следовательно, данное равенство является тождеством.

Пример 2. Докажите тождество: a ² + 7· a + 10 = (a +5)·(a +2).

Решение:

В данном примере можно поступить следующим способом. Раскроем скобки в правой части равенства.

(a+5)·(a+2) = (a²) + 5·a +2·a +10 = a²+7·a + 10.

Видим, что после преобразований, правая часть равенства стала такой же как и левая часть равенства. Следовательно, данное равенство является тождеством.

« Замену одного выражения другим, тождественно равным ему, называют тождественным преобразованием выражения»

Выяснить какое равенство является тождеством:

1. - (а – в) = - а – в;

2. 2 · (х + 4) = 2х – 4;

3. (х – 5) · (-3) = - 3х + 15.

4. рху (- р2 х2 у) = - р3 х3 у3.

«Чтобы доказать, что некоторое равенство является тождеством, или, как говорят иначе, чтобы доказать тождество, используют тождественные преобразования выражений»

Равенство верное при любых значениях переменных, называют тождеством. Чтобы доказать, что некоторое равенство является тождеством, или, как говорят иначе, чтобы доказать тождество , используют тождественные преобразования выражений.
Докажем тождество:
xy - 3y - 5x + 16 = (x - 3)(y - 5) + 1 Преобразуем левую часть этого равенства:
xy - 3y - 5x + 16 = (xy - 3y) + (- 5x + 15) +1 = y(x - 3) - 5(x -3) +1 = (y - 5)(x - 3) +1 В результате тождественного преобразования левой части многочлена мы получили его правую часть и тем самым доказали, что данное равенство является тождеством.
Для доказательства тождества преобразуют его левую часть в правую или его правую часть в левую, или показывают, что левая и правая части исходного равенства тождественно равны одному и тому же выражению.

Умножение многочлена на многочлен

Умножим многочлен a + b на многочлен c + d . Составим произведение этих многочленов:
(a+b)(c+d) .
Обозначим двучлен a + b буквой x и преобразуем полученное произведение по правилу умножения одночлена на многочлен:
(a+b)(c+d) = x(c+d) = xc + xd.
В выражение xc + xd. подставим вместо x многочлен a+b и снова воспользуемся правилом умножения одночлена на многочлен:
xc + xd = (a+b)c + (a+b)d = ac + bc + ad + bd.
Итак: (a+b)(c+d) = ac + bc + ad + bd .
Произведение многочленов a + b и c + d мы представили в виде многочлена ac + bc + ad + bd . Этот многочлен является суммой всех одночленов, получающихся при умножении каждого члена многочлена a + b на каждый член многочлена c + d .
Вывод : произведение любых двух многочленов можно представить в виде многочлена .
Правило : чтобы умножить многочлен на многочлен, нужно каждый член одного многочлена умножить на каждый член другого многочлена и полученные произведения сложить .
Заметим, что при умножении многочлена, содержащего m членов на многочлен, содержащий n членов в произведении до приведения подобных членов должно получиться mn членов. Этим можно воспользоваться для контроля.

Разложение многочлена на множители способом группировки:

Ранее мы познакомились с разложением многочлена на множители путем вынесения общего множителя за скобки. Иногда удается разложить многочлен на множители, используя другой способ - группировку его членов .
Разложим на множители многочлен
ab - 2b + 3a - 6 Сгруппируем его так, чтобы слагаемые в каждой группе имели общий множитель и вынесем этот множитель за скобки:
ab - 2b + 3a - 6 = (ab - 2b) + (3a - 6) = b(a - 2) + 3(a - 2) Каждое слагаемое получившегося выражения имеет общий множитель (a - 2). Вынесем этот общий множитель за скобки:
b(a - 2) + 3(a - 2) = (b +3)(a - 2) В итоге мы разложили исходный многочлен на множители:
ab - 2b + 3a - 6 = (b +3)(a - 2) Способ, который мы применили для разложения многочлена на множители называют способом группировки .
Разложение многочлена ab - 2b + 3a - 6 на множители можно выполнить, группируя его члены иначе:
ab - 2b + 3a - 6 = (ab + 3a) + (- 2b - 6) = a(b + 3) -2(b + 3) = (a - 2)(b + 3)

Повторить:

1. Способы доказательства тождеств.

2. Что называют тождественным преобразованием выражения.

3. Умножение многочлена на многочлен.

4. Разложение многочлена на множители способом группировки

Рассмотрим две равенства:

1. a 12 *a 3 = a 7 *a 8

Это равенство будет выполняться при любых значениях переменной а. Областью допустимых значений для того равенства будет все множество вещественных чисел.

2. a 12: a 3 = a 2 *a 7 .

Это неравенство будет выполняться для всех значений переменной а, кроме а равного нулю. Областью допустимых значений для этого неравенства будет все множество вещественных чисел, кроме нуля.

О каждом из этих равенств можно утверждать, что оно будет верно при любых допустимых значениях переменных а. Такие равенства в математике называются тождествами .

Понятие тождества

Тождество - это равенство, верное при любых допустимых значениях переменных. Если в данное равенство подставить вместо переменных любые допустимые значения, то должно получиться верное числовое равенство.

Стоит отметить, что верные числовые равенства тоже являются тождествами. Тождествами, например, будут являться свойства действий над числами.

3. a + b = b + a;

4. a + (b + c) = (a + b) + c;

6. a*(b*c) = (a*b)*c;

7. a*(b + c) = a*b + a*c;

11. a*(-1) = -a.

Если два выражения при любых допустимых переменных соответственно равны, то такие выражения называют тождественно равными . Ниже представлены несколько примеров тождественно равных выражений:

1. (a 2) 4 и a 8 ;

2. a*b*(-a^2*b) и -a 3 *b 2 ;

3. ((x 3 *x 8)/x) и x 10 .

Мы всегда можем заменить одно выражение любым другим выражением, тождественно равным первому. Такая замена будет являться тождественным преобразованием.

Примеры тождеств

Пример 1: являются ли тождествами следующие равенства:

1. a + 5 = 5 + a;

2. a*(-b) = -a*b;

3. 3*a*3*b = 9*a*b;

Не все представленные выше выражения будут являться тождествами. Из этих равенств тождествами являются лишь 1,2 и 3 равенства. Какие бы числа мы в них не подставили, вместо переменных а и b у нас все равно получатся верные числовые равенства.

А вот 4 равенство уже не является тождеством. Потому что не при всех допустимых значениях это равенство будет выполняться. Например, при значениях a = 5 и b = 2 получится следующий результат:

Данное равенство не верно, так как число 3 не равняется числу -3.

Тождество

отношение между предметами (реальными или абстрактными), которое позволяет говорить о них как о неотличимых друг от друга, в какой-то совокупности характеристик (напр., свойств). В действительности все предметы (вещи) обычно отличаются нами друг от друга по каким-то характеристикам. Это не исключает того обстоятельства, что у них есть и общие характеристики. В процессе познания мы отождествляем отдельные вещи в их общих характеристиках, объединяем их в множества по этим характеристикам, образуем понятия о них на основе абстракции отождествления (см.: Абстракция). Предметы, объединяемые в множества по некоторым общим для них свойствам, перестают различаться между собой, поскольку в процессе такого объединения мы отвлекаемся от их различий. Иными словами, они становятся неразличимыми, тождественными в этих свойствах. Если бы все характеристики двух объектов а и b оказались тождественными, объекты превратились бы в один и тот же предмет. Но этого не происходит, т. к. в процессе познания мы отождествляем отличные друг от друга предметы не по всем характеристикам, а лишь по некоторым. Без установления тождеств и различий между предметами невозможно никакое познание окружающего нас мира, никакая ориентировка в окружающей нас среде.

Впервые в самой общей и идеализированной формулировке понятие Т. двух предметов дал Г. В. Лейбниц. Закон Лейбница можно сформулировать так: "х = у, если и только если х обладает каждым свойством, которым обладает у, а у обладает каждым свойством, которым обладает х". Другими словами, предмет х может быть отождествлен с предметом у, когда абсолютно все их свойства являются одними и теми же. Понятие Т. широко используется в различных науках: в математике, логике и естествознании. Однако во всех случаях

его применения тождество изучаемых предметов определяют не по абсолютно всем общим характеристикам, а лишь по некоторым, что связано с целями их изучения, с тем контекстом научной теории, в пределах которой изучаются эти предметы.


Словарь по логике. - М.: Туманит, изд. центр ВЛАДОС . А.А.Ивин, А.Л.Никифоров . 1997 .

Синонимы :

Смотреть что такое "тождество" в других словарях:

    Тождество - Тождество ♦ Identité Совпадение, свойство быть таким же. Таким же, как что? Таким же, как такое же, иначе это будет уже не тождество. Таким образом, тождество есть в первую очередь отношение себя к себе (мое тождество это и есть я сам) либо … Философский словарь Спонвиля

    Понятие, выражающее предельный случай равенства объектов, когда не только все родовидовые, но и все индивидуальные их свойства совпадают. Совпадение родовидовых свойств (сходство), вообще говоря, не ограничивает числа приравниваемых… … Философская энциклопедия

    См … Словарь синонимов

    Отношение между объектами (предметами реальности, восприятия, мысли), рассматриваемыми как одно и то же; предельный случай отношения равенства. В математике тождество это уравнение, которое удовлетворяется тождественно, т. е. справедливо для… … Большой Энциклопедический словарь

    ТОЖДЕСТВО, а и ТОЖЕСТВО, а, ср. 1. Полное сходство, совпадение. Т. взглядов. 2. (тождество). В математике: равенство, справедливое при любых числовых значениях входящих в него величин. | прил. тождественный, ая, ое и тожественный, ая, ое (к 1… … Толковый словарь Ожегова

    тождество - ТОЖДЕСТВО понятие, обычно представленное в естественном языке либо в форме «я (есть) то же, что и Ь >, или «а тождественно Ь», что может быть символизировано как «а = Ь» (такое утверждение обычно называют абсолютным Т.), либо в форме… … Энциклопедия эпистемологии и философии науки

    тождество - (неправильно тождество) и устарелое тожество (сохраняется в речи математиков, физиков) … Словарь трудностей произношения и ударения в современном русском языке

    И РАЗЛИЧИЕ две взаимосвязанные категории философии и логики. При определении понятий Т. и Р. используют два фундаментальных принципа: принцип индивидуации и принцип Т. неразличимых. Согласно принципу индивидуации, который был содержательно развит … История Философии: Энциклопедия

    Англ. identity; нем. Identitat. 1. В математике уравнение, справедливое при всех допустимых значениях аргументов. 2. Предельный случай равенства объектов, когда не только все родовые, но и все индивидуальные их свойства совпадают. Antinazi.… … Энциклопедия социологии

    - (обозначение ≡) (identity, symbol ≡) Уравнение, являющееся истинным при любых значениях входящих в него переменных. Так, z ≡ х + y означает, что z всегда сумма х и y. Многие экономисты порой не последовательны и используют обычный знак даже тогда … Экономический словарь

    тождество - идентичность идентификация личности ID — [] Тематики защита информации Синонимы идентичностьидентификация личностиID EN identityID … Справочник технического переводчика

Книги

  • Различие и тождество в греческой и средневековой онтологии , Р. А. Лошаков. В монографии исследуются основные вопросы греческой (аристотелевской) и средневековой онтологии в свете понимания бытия как Различия. Тем самым демонстрируется производный, вторичный,…


Рассказать друзьям