Динамический диапазон в фотографии. Как запечатлеть все тона снимаемой сцены

💖 Нравится? Поделись с друзьями ссылкой

Определение


Ввиду смысловой схожести таких фотографических параметров, как динамический диапазон и фотографическая широта, в применении этой терминологии существует изрядная путаница. Природа этой путаницы — в непонимании отношения реальных яркостей к их отображению на плёнке или в цифре. Попробую внести ясность.

Фотографическая широта — максимально возможный диапазон внешних яркостей, которые может каким либо образом зафиксировать фотоустройство (фотоаппарат, в том числе и цифровой, сканер и т.п.) внутри одного кадра.

Динамический диапазон — максимально возможный полезный диапазон оптических плотностей плёнки, фотобумаги и т.п. или максимально возможный полезный диапазон количеств электронов, могущих помещаться в каждом пикселе электронной матрицы фотоустройства.

Таким образом, термин «фотографическая широта» применяется для оценки запечетлеваемого диапазона внешних яркостей, а динамический диапазон — для оценки физических свойств внутреннего носителя (оптическая плотность плёнки, ёмкость и шумность пикселей матрицы и т.п.).

Примеры :

Фотографическая широта плёнки (контрастность) — способность её фиксировать некоторый диапазон внешних яркостей. Приблизительные значения для негативов 2,5-9 EV, для слайдов 2-4 EV, для киноплёнки 14EV.
Динамический диапазон плёнки (диапазон оптических плотностей) — её способность в некотором диапазоне изменять свою прозрачность (оптическую плотность) в зависимости от воздействия внешней яркости. Приблизительные значения для негативов 2-3D, для слайдов 3-4D.

Фотографическая широта фотобумаги (контрастность) — способность её фиксировать некоторый диапазон внешних яркостей (от фотоувеличителя). Типичные значения для чёрно-белых бумаг: 0,7-1,7 EV.
Динамический диапазон фотобумаги
(диапазон оптических плотностей) — её способность в некотором диапазоне изменять степень отражения (оптическую плотность) в зависимости от внешней яркости (от фотоувеличителя). Типичные значения от 1,2 до 2,5D.

Фотографическая широта матрицы цифрового аппарата — способность её фиксировать некоторый диапазон внешних яркостей. У цифрокомпактов 7-8 EV, у зеркалок 10-12 EV.
Динамический диапазон матрицы цифрового фотоаппарата — способность пикселей матрицы в некотором количественном диапазоне накапливать разное количество электронов в зависимости от уровня внешней яркости. Динамический диапазон цифрокомпактов — 2,1-2,4D, а зеркалок — 3-3,6D.

Фотографическая широта графического файла — Поскольку файл — это всего лишь способ хранения информации, то за счёт потери градаций в любой формат файла можно запихнуть любой диапазон внешних яркостей. Стандартные величины у формата восьмибитного JPEG — это 8 EV, у HDRI (Radiance RGBE) — до 252 EV. От количества бит, выделяемых для хранения каждого пикселя, этот параметр зависит лишь косвенно, поскольку способ упаковки информации в эти биты у разных форматов различен.
Динамический диапазон графического файла — способность файла хранить в себе некоторый диапазон значений каждого пикселя.

Фотографическая широта монитора — Поскольку монитор — это только устройство отображения, то этот параметр не имеет особого смысла. Ближайшим по смыслу параметром будет способность монитора отображать закодированный в графическом файле диапазон значений яркости. Но он зависит в основном от используемого цветового профиля и программы отображения, которые с тем или иным успехом втискивают всю (или не всю) фотографическую широту изображения, содержащуюся в файле, в рамки динамического диапазона монитора. Замечу, что чем большая фотоширота втиснута в динамический диапазон, тем менее контрастно выглядит изображение.
Динамический диапазон монитора (контрастность) — способность пикселя монитора в некотором диапазоне изменять свою яркость в зависимости от напряжения входящего сигнала. Динамический диапазон современных мониторов находится в пределах 2,3 - 3D (200:1 — 1000:1) .

Фотографическая широта матрицы сканера — способность её фиксировать некоторый диапазон яркостей отражённого от бумаги или пропущенного через плёнку света. Составляет от 6 EV у офисных планшетных до 16 EV у профессиональных барабанных сканеров.
Динамический диапазон матрицы сканера — способность пикселей матрицы сканера в некотором количественном диапазоне накапливать разное количество электронов в зависимости от яркости отражённого от бумаги или пропущенного через плёнку света. Динамический диапазон сканеров может принимать значения от 1,8D у офисных планшетников до 4,9D у профессиональных барабанных сканеров.

Примечание по сканеру : Поскольку лампа сканера создаёт постоянную освещённость сканируемого материала, верхняя граница яркости этого материала фиксирована (абсолютно белый лист или полностью прозрачная плёнка). Поэтому и верхняя граница динамического диапазона матрицы фиксирована, будучи подогнанной под эту максимальную яркость. Следовательно, величины фотографической широты и динамического диапазона совпадают. Кроме того, зная динамический диапазон плёнки (бумаги) и его сдвиг относительно полной прозрачности (абсолютной белизны), можно смело сравнить динамические диапазоны плёнки (бумаги) и сканера, и определить, сможет ли тот или иной сканер оцифровать плёнку (бумагу) без потерь градаций. Для справки: динамический диапазон вуали (максимальной прозрачнгости) фотоплёнок приблизительно составляет 0,1D.

Обшее примечание 1. Не все вышеперечисленные словосочетания реально используются, но они упомянуты для полноты картины, чтобы яснее можно было прочувствовать разницу между фотографической широтой и динамическим диапазоном.

Обшее примечание 2. Очевидно, что фотографическая широта и динамический диапазон для одного и того же аналогового фотоустройства или материала имеют разные величины, даже если их попытаться выразить в одинаковых единицах. Для цифровых же фотоустройств эти параметры имеют одну величину. Из-за этого понятие фотошироты обычно подменяется понятием динамического диапазона. К счастью, для цифровых фотоустройств это не критично.

Единицы измерения


Динамический диапазон измеряют по шкале, каждое следующее деление которой соответствует снижению измеряемого параметра в 10 раз, а фотографическую широту по шкале, каждое следующее деление которой соответствует снижению измеряемого параметра в 2 раза.

Исходя из понятия логарифма (показатель степени, в которую надо возвести одно число, чтобы получить другое), обе эти шкалы являются логарифмическими. В первом случае используется логарифм по основанию 10 (десятичный логарифм — log 10 или lg), во втором — по основанию 2 (двоичный логарифм — log 2 или lb).

Десятичный логарифм используется для компактности шкалы динамического диапазона и соответствия каждого следующего деления шкалы динамического диапазона зрительному ощущению падения яркости в 2 раза при фактическом десятикратном падении величины измеряемого параметра, а двоичный — для соответствия каждого следующего деления шкалы фотографической широты зрительному ощущению равномерного падения яркости при геометрически увеличивающимся падении количества света.

Размер динамического диапазона или фотографической широты записываются цифрой, обозначающей количество делений по соответствующей шкале между измеренными точками. При этом, если измерения проходят по шкале динамического диапазона, рядом с цифрой ставят обозначение D (2D, 2,7D, 4D, 4,2D), а если по шкале фотографической широты, то используется обозначение EV (Exposure Value — значение экспозиции) или просто количество ступеней или стопов (делений).

Часто динамический диапазон записывают просто как отношение, например 100:1 (2D) или 1000:1 (3D).

Формула же для измерения полезного динамического диапазона следующая: динамический диапазон равен десятичному логарифму из отношения максимальной величины измеряемого параметра к минимальному, то есть уровню шума:

D = lg(Max/Min)

Формула вычисления фотошироты аналогична, но вместо десятичного логарифма применяется двоичный.

Динамический диапазон цифровых устройств измеряют ещё и в децибеллах. Способ измерения практически аналогичен вышеописанному, поскольку децибел - тоже логарифмическая величина, и тоже вычисляется через десятичный логарифм. Но значение в децибелах будет в 20 раз больше (1D = 20 дб), и сейчас я объясню, почему.

Измерению в этом случае подвергается разница напряжений, в которые преобразовываются накопленные в каждом пикселе матрицы электроны. Впрочем, это напряжение пропорционально количеству накопленных электронов, но я упомянул напряжение не случайно. Дело в том, что в децибелах измеряют диапазоны только энергетических величин : мощностей, энергий и интенсивностей. И способ их вычисления полностью аналогичен вышеописанному за исключением умножения итогового числа на 10, потому что мы мерием не белы а децибелы, которые в 10 раз меньше.

Однако существует возможность померить в децибелах и амплитудные величины , такие как напряжение, ток, импеданс, напряженности электрического или магнитного полей и размахи любых волновых процессов. Но для этого надо учесть зависимость от них соответствующей им энергетической величины.

Вычислим зависимость мощности от напряжения . Мощность равна квадрату напряжения делённого на сопротивление, то есть она зависит от напряжения квадратично . Увеличивая напряжение в 2 раза мощность увеличивается в 4 раза. Значит, чтобы сохранить мощностную пропорцию, придётся мерить диапазон не напряжений, а квадратов этих напряжений:

lg(U max 2 /U min 2) = lg(U max /U min) 2 = 2*lg(U max /U min)

Мы получим значение в белах. Для перевода в децибелы умножаем на 10. В итоге полная формула принимает вид:

Децибелы = 20*lg(U max /U min)

Таким образом, у нас получается, что динамический диапазон в децибелах равен подсчитанному нами по шкале динамическому диапазону, умноженному на коэффициент 20.


Иногда из-за путаницы в терминологии динамический диапазон измеряют в единицах экспозиции (EV), ступенях или стопах, как фотографическую широту, а фотографическую широту — как динамический диапазон. Чтобы привести параметры к нормальному виду, приходится пересчитывать диапазон из одной шкалы в другую. Для этого необходимо вычислить цену деления одной шкалы в цифрах другой. Например, цену деления шкалы фотографической широты в цифрах шкалы динамического диапазона.

Кроме того, принимая во внимание логарифмичность шкал и зная динамический диапазон фотоустройства, можно вычислить его фотографическую широту, и наоборот, по его фотографической широте можно узнать его динамический диапазон. Для этого нужно опять же просто пересчитать диапазон из одной шкалы в другую.

Поскольку деления шкалы представляют собой степени, вычислим, в какую степень надо возвести десятку (размерность шкалы динамического диапазона), чтобы получить двойку (размерность шкалы фотографической широты). Берём десятичный логарифм от двойки и получаем цену одного деления шкалы фотографической широты в единицах шкалы динамического диапазона — приблизительно 0,301. Это число и будет коэффициентом перевода. Теперь, для перевода EV в D, следует EV умножить на 0,3, а для перевода из D в EV, следует D разделить на 0,3.

Замечу, что шкала фотографической широты применяется не только для измерения диапазонов, но и для измерения конкретных величин экспозиции. Поэтому она имеет условный ноль, который соответствует яркости света, падающего от объекта, освещённость которого составляет 2,5 люкса (для нормальной экспозиции объекта с таким освещением требуется диафрагма 1.0 и выдержка 1 сек. при чувствительности ISO 100). Таким образом, экспозиция вполне может принимать по этой шкале отрицательные значения в EV. Диапазон же, естественно, всегда положителен.

Битовая глубина цифрового фотоустройства.


При упоминаниях о динамическом диапазоне фотоустройств иногда упоминается их битовая глубина. Давайте разберёмся, что это такое.

Между максимальным и минимальным значениями существует большое количество градаций, соответствующих разным яркостям, воспринятым пикселем. Для цифровой фиксации градаций в двоичном представлении требуется некоторое количество бит. Это количество бит и называется битовой глубиной АЦП (аналого-цифрового преобразователя фотоустройства, преобразующего количество возбуждённых электронов в пикселе в ту или иную цифру).

В современных сканерах на каждый из трёх цветов выделяют обычно по 16 бит. В цифровых фотоаппаратах это значение несколько меньше. Но даже там битовая глубина является избыточной, потому что основным ограничением является не разрядность АЦП, а динамический диапазон пикселей, которые пока неспособны накапливать большее количество электронов, или же иметь более низкий показатель случайного теплового шума, чтобы не глушить полезные электроны. В результате, младшие биты избыточной битовой глубины заняты в основном значениями случайного теплового шума.

16 ноября 2009 года

Видеокамеры с широким динамическим диапазоном

Видеокамеры с широким динамическим диапазоном (WDR) предназначены для обеспечения качественного изображения при встречной засветке и наличии в кадре как очень ярких, так и очень темных областей и деталей. При этом яркие области не насыщаются, а темные не отображаются слишком темными. Такие камеры обычно рекомендуются для организации наблюдения за объектом, находящимся напротив окон, в освещенном сзади проеме двери или ворот, а также при большом контрасте объектов.

Динамический диапазон видеокамеры обычно определяется как отношение самого яркого фрагмента изображения к самому темному фрагменту того же самого изображения, то есть в пределах одного кадра. Это отношение по-другому называется максимальным контрастом изображения.

Проблема динамического диапазона

К сожалению, реальный динамический диапазон видеокамер строго ограничен. Он существенно у"же динамического диапазона большинства реальных объектов, ландшафтов и даже сцен кино и фотографии. Кроме того, условия применения видеокамер наблюдения в части освещения зачастую далеки от оптимальных. Так, интересующие нас объекты могут быть расположены на фоне ярко освещенных стен и предметов или встречного (контро-вого) света. В этом случае объекты или их детали на изображении будут слишком темными, так как видеокамера автоматически адаптируется к высокой средней яркости кадра. В некоторых ситуациях на наблюдаемой "картинке" могут иметь место яркие пятна со слишком большими градациями яркости, которые трудно передаются стандартными камерами. Например, обычная улица при солнечном освещении и с тенями от домов имеет контраст от 300:1 до 500:1, для темных пролетов арок или ворот с освещенным солнцем фоном контраст достигает 10 000:1, внутренность темной комнаты против окон имеет контраст до 100 000:1.

Ширина результирующего динамического диапазона ограничивается несколькими факторами: диапазонами самого датчика (фотоприемника), обрабатывающего процессора (DSP) и дисплея (видеоконтрольного устройства). Типовые CCD (ПЗС-матрицы) имеют максимальный контраст не более 1000:1 (60 дБ) по интенсивности. Самый темный сигнал ограничен тепловым шумом или "темновым током" датчика. Самый яркий сигнал ограничен суммой заряда, который может быть накоплен в отдельном пикселе. Обычно CCD построены так, что этот заряд составляет приблизительно 1000 темновых зарядов, обусловленных температурой CCD.

Динамический диапазон может быть существенно увеличен для специального применения камер, например для научных или астрономических исследований, путем охлаждения CCD и применения специальных систем считывания и обработки. Однако такие методы, будучи очень дорогими, не могут использоваться широко.

Как указывалось выше, множество задач требует размера динамического диапазона 65-75 дБ (1:1800-1:5600), поэтому при отображении сцены даже с диапазоном в 60 дБ детали в темных областях потеряются в шуме, а детали в ярких областях — из-за насыщения, либо диапазон будет обрезан сразу с двух сторон. Системы считывания, аналоговые усилители и аналого-цифровые преобразователи (АЦП) для видеосигнала в режиме реального времени ограничивают сигнал CCD до динамического диапазона в 8 бит (48 дБ). Такой диапазон может быть расширен до 10-14 бит за счет использования соответствующих АЦП и обработки аналогового сигнала. Однако зачастую это решение оказывается непрактичным.

Другой альтернативный тип схемы использует нелинейное преобразование в виде логарифмической функции или ее аппроксимации для сжатия 60 дБ выходного сигнала CCD до диапазона в 8 бит. Обычно такие методы подавляют детали изображения.

Последний (указанный выше) фактор ограничения — вывод картинки на дисплей. Динамический диапазон для нормального CRT-монитора, работающего в освещенной комнате, составляет около 100 (40 дБ). LCD-монитор еще более "ограничен". Сигнал, сформированный видеотрактом и даже ограниченный до контраста 1:200, будет уменьшен в динамическом диапазоне при показе. Чтобы оптимизировать показ, пользователь часто должен регулировать контраст и яркость монитора. И если он хочет получить изображение с максимальным контрастом, придется пожертвовать частью динамического диапазона.

Типовые решения

Имеются два основных технологических решения, которые используются, чтобы обеспечить видеокамеры расширенным динамическим диапазоном:

  • множественное отображение кадра — видеокамера захватывает несколько полных изображений или его отдельных областей. При этом каждая "картинка" отображает различную область динамического диапазона. После чего камера объединяет эти различные изображения, чтобы воспроизвести единое изображение с расширенным динамическим диапазоном (WDR);
  • использование нелинейных, обычно логарифмических, датчиков — в этом случае степень чувствительности при различных уровнях освещения различна, что позволяет обеспечить широкий динамический диапазон яркости изображения в одном кадре.

Применяются разные комбинации этих двух технологий, но наиболее распространенная — первая.

Для получения одного оптимального изображения из нескольких используется 2 метода:

  • параллельное отображение двумя или более датчиками изображения, сформированного общей оптической системой. В этом случае каждый датчик захватывает различную часть динамического диапазона сцены за счет различного времени экспонирования (накопления), различного оптического ослабления в индивидуальном оптическом тракте или за счет использования датчиков различной чувствительности;
  • последовательное отображение изображения единственным датчиком с различными временами экспонирования (накопления). В крайнем случае производится по крайней мере два отображения: одно с максимальным, а другое — с более коротким временем накопления.

Последовательное отображение, как наиболее простое решение, обычно используется в промышленности. Длительное накопление обеспечивает видимость наиболее темных частей объекта, однако самые яркие фрагменты могут не прорабатываться и даже приводить к насыщению фотоприемника. Картинка, получаемая с малым накоплением, адекватно отображает светлые фрагменты изображения, не прорабатывая темные области, находящиеся на уровне шума. Сигнальный процессор изображения камеры объединяет обе картинки, беря яркие части от "короткой", а темные части от "длительной" картинки. Алгоритм комбинации, позволяющий создавать гладкое изображение без шва, достаточно сложен, и мы не будем здесь его касаться.

Первыми представила концепцию объединения двух цифровых изображений, полученных при разном времени накопления, в единое изображение с широким динамическим диапазоном группа разработчиков во главе с профессором И.И. Зиви из компании "Tech-nion", Израиль. В 1988 г. концепция была запатентована ("Камера широкого динамического диапазона" Y.Y. Zeevi, R. Ginosar и O. Hilsenrath), а в 1993 г. ее применили при создании коммерческой медицинской видеокамеры.


Современные технические решения

В современных камерах для расширения динамического диапазона на основе получения двух изображений в основном применяются матрицы Sony двойного сканирования (Double Scan CCD) ICX 212 (NTSC), ICX213 (PAL) и специальные процессоры для обработки изображения, например SS-2WD или SS-3WD. Примечательно, что такие матрицы невозможно обнаружить в ассортименте SONY и не все производители указывают на их использование. На рис. 1 схематически представлен принцип двойного накопления. Время указано по формату NTSC.

Из диаграмм видно, что если типовая камера накапливает поле 1/60 с (PAL-1/50 с), то камера WDR составляет поле из двух изображений, полученных путем накопления, за 1/120 с (PAL-1/100 с) для мало освещенных деталей и за период от 1/120 до 1/4000 с для сильно освещенных деталей. На фото 1 представлены кадры с разным экспонированием и результат суммирования (обработки) режима WDR.

Эта технология позволяет "довести" динамический диапазон до 60-65 дБ. К сожалению, числовые значения WDR, как правило, приводятся только производителями верхней ценовой категории, остальные же ограничиваются информацией о наличии функции. Имеющаяся регулировка градуирована обычно в относительных единицах. На фото 2 представлен пример сравнительной отработки типовой и камерой WDR встречного света от стеклянной витрины и дверей. Встречаются модели телекамер, в документации на которые указано, что они работают в режиме WDR, но нет упоминания о требуемой специальной элементной базе. В этом случае, естественно, может возникать вопрос, является ли заявленный режим WDR таким, каким мы ожидаем? Вопрос справедлив, поскольку даже в сотовых телефонах уже применяется режим авторегулирования яркости изображения встроенного фотоаппарата, называемый WDR. С другой стороны, встречаются модели с заявленным режимом расширения динамического диапазона, названным как Easy Wide-D или EDR, которые работают с типовыми CCD. Если в данном случае указывается величина расширения, то она не превышает 20-26 дБ. Одним из способов расширения динамического диапазона является применяемая сейчас компанией Panasonic технология Super Dinamic III. Она также основана на двойном экспонировании кадра за 1/60 с (1/50С-PAL) и 1/8000 с (с последующим анализом гистограмм, разделением картинки на четыре варианта с различной гамма-коррекцией и их интеллектуальным суммированием в DSP). На рис. 2 представлена обобщенная структура этой технологии. Подобная система расширяет динамический диапазон до 128 раз (на 42 дБ).

Наиболее перспективной технологией расширения динамического диапазона телекамеры на сегодня является технология Digital Pixel System™ (DPS), разработанная в Стен-фордском университете в 1990-х гг. и запатентованная компанией PIXIM Inc. Основным нововведением для DPS является использование AЦП для переведения величины фотозаряда в ее цифровое значение непосредственно в каждом пикселе сенсора. CMOS(КМОП)-матрицы сенсора препятствуют ухудшению качества сигнала, что увеличивает общее отношение сигнал/шум. Технология DPS позволяет вести обработку сигнала в режиме реального времени.

Технология PIXIM использует метод, известный как мультисемплинг (многократная выборка), что позволяет сформировать изображение высочайшего качества и обеспечить широкий динамический диапазон преобразователя (свет/сигнал). В технологии PIXIM DPS используется пятиуровневый мультисемплинг, это позволяет получать сигнал от сенсора с одним из пяти значений экспозиции. Во время экспонирования производится измерение величины освещенности каждого пикселя кадра (для стандартного видеосигнала — 50 раз в секунду). Система обработки изображения определяет оптимальное время экспонирования и сохраняет полученное значение до того, как произойдет перенасыщение пикселя и прекратится дальнейшее накопление заряда. Рис. 3 поясняет принцип адаптивного накопления. Значение светлого пикселя сохранено при времени экспонирования Т3 (перед насыщением пикселя на 100%). Темный пиксель накапливал заряд более медленно, что требовало дополнительного времени, его значение сохранено при времени Т6. Сохраненные значения (интенсивность, время, уровень шума), измеренные в каждом пикселе, одновременно обрабатываются и преобразуются в высококачественное изображение. Поскольку у каждого пикселя есть свой встроенный АЦП и параметры освещенности измерены и обработаны независимо, то каждый пиксель в действительности действует как отдельная камера.


Системы формирования изображения PIXIM, основанные на технологии DPS, состоят из цифрового сенсора изображения и процессора обработки изображения. В современных цифровых сенсорах используется квантование в 14 и даже в 17 бит. Относительно невысокая чувствительность, как основной недостаток CMOS-технологии, характерна и для DPS. Типовая чувствительность камер этой технологии ~1 лк. Типовое значение отношения сигнал/шум для формата 1/3" составляет 48-50 дБ. Заявляемый максимальный динамический диапазон — до 120 дБ с типовым значением 90-95 дБ. Возможность регулирования времени накопления для каждого пикселя матрицы сенсора позволяет при формировании изображения использовать такой уникальный метод обработки сигнала, как метод выравнивания локальных гистограмм, позволяющий резко повысить информативность изображения. Технология позволяет полностью компенсировать засветку фона, выделить детали, оценить пространственное положение объектов и деталей, находящихся не только на переднем, но и на заднем плане изображения. На фото 3, 4 и 5 приведены кадры, полученные типовой CCD-камерой и камерой PIXIM.

Практика

Итак, можно сделать вывод о том, что сегодня при необходимости вести видеонаблюдение в сложных условиях высококонтрастного освещения можно подобрать телекамеру, достаточно адекватно передающую весь диапазон яркости объектов. Для этого наиболее предпочтительно использование видеокамер с технологией PIXIM. Довольно хорошие результаты обеспечивают системы на основе двойного сканирования. Как компромисс можно рассматривать дешевые телекамеры на основе типовых матриц и электронных систем EWD и многозонной BLC. Естественно, желательно использовать оборудование с оговоренными величинами характеристик, а не только с упоминанием наличия того или иного режима. К сожалению, на практике результаты работы конкретных моделей не всегда соответствуют ожиданиям и рекламным заявлениям. Но это тема для отдельного разговора.

В самом упрощённом виде определение звучит так: динамический диапазон определяет способность светочувствительного материала (фотопленки, фотобумаги, светочувствительной аппарата) правильно передавать яркости снимаемого объекта. Не очень понятно? Суть явления не так очевидна, как кажется на первый взгляд. Дело в том, что глаз и фотоаппарат видят мир по-разному. Глаз развивался несколько сот миллионов лет, а оптическая система аппарата — полторы сотни лет. Для глаза огромный перепад яркостей в наблюдаемом мире — тривиальная задача, а для аппарата — иногда непосильная. И, если глаз воспринимает весь диапазон яркостей, то фотоаппарат «видит» только узкую часть диапазона , которая как бы передвигается по шкале в одну и другую сторону, в то время как мы изменяем съёмки.

Давайте на несколько минут вернёмся в прошлый, XX, век, во времена плёночной фотографии. Тому, кто не застал тех славных времён, придётся напрячь свою фантазию.

Техпроцесс печати, наверное, представляют все. Свет лампы увеличителя, пройдя через негатив, освещает фотобумагу. Там, где негатив прозрачный, весь свет проходит, не задерживаясь, а там, где плотный – поток сильно ослабевает. Потом бумага помещается в проявитель. Те места, которым досталось много света – чернеют, а участки, оставшиеся на голодном световом пайке – наоборот, остаются белыми. Ну и, конечно, никуда не делись промежуточные тона. Представим, что на негативе есть как абсолютно чёрные участки, через которые свет вообще не пробивается, так и абсолютно прозрачные, пропускающие весь свет. Есть ещё такое понятие, как время максимальной выдержки. Оно для каждого увеличителя своё и зависит от типа лампы, её мощности и от конструкции рассеивателя. Допустим, что это время составляет 10 секунд. Нам не столько важна абсолютная его величина, сколько само понятие – за эти 10 секунд фотобумага, помещённая под лампу фотоувеличителя, безо всякого негатива (или с абсолютно прозрачным негативом), сможет вобрать в себя весь поступивший свет. Больше она просто не примет – происходит насыщение. Свети хоть 20 секунд, хоть 3600 – разницы уже не будет. Она уже и так останется максимально чёрной.

Внимание, вопрос. Как Вы считаете, сколько полутонов сможет расположиться на полоске фотобумаги между абсолютно белым и абсолютно чёрным участком, так чтобы человек различал разницу между ними? Давайте разделим полоску на 10 частей, и будем увеличивать экспозицию (то есть количество света) для каждого последующего участка на одну и ту же величину, например, на секунду. Таким образом, мы получим 10 участков, со всё увеличивающейся экспозицией (всё более чёрных). Вот это количество полутонов, которые может воспроизвести светоприёмник, и называется его динамическим диапазоном.

Вы удивитесь, когда не сможете различить все 10 переходов на полоске фотобумаги, особенно в светлой её части (глаз человека сможет различить гораздо больше, не справится именно бумага). Оказывается, что фотобумага, на которой напечатаны все чёрно-белые шедевры за последние лет 150, может уверенно передать всего-навсего 5-6-7 ступеней полутонов, в зависимости от контраста. Чуть лучше обстоит дело с фотоплёнкой – она вмещает в себя 12-14, а то и ещё больше градаций полутонов! У слайдовой плёнки диапазон полутонов составляет 7-10 ступеней.

Нас, как цифровых фотографов, интересует, конечно, матрица цифрового аппарата. Довольно долгое время цифроматрица находилась в явных аутсайдерах. Её динамический диапазон был примерно сопоставим с таковой у слайдовой плёнки. Сегодня же, с почти полным переходом на CCD-матрицу, динамический диапазон матрицы цифровых аппаратов значительно расширен – примерно до 12-14 ступеней. Специальные же матрицы от Fuji имеют ещё бОльший динамический диапазон (В этих матрицах для увеличения динамического диапазона используется наличие на одной и той же матрице элементов различной площади и различной эффективной чувствительности. Передача низких уровней яркости обеспечивается элементами большой чувствительности, а высоких яркостей - низкой).

Для чего нам нужно понятие динамического диапазона? Дело в том, что оно очень тесно связано с измерением и выбором .

Среднестатистический сюжет как раз состоит из этих самых 7-8 ступеней экспозиции. И, если мы верно выставим экспозицию, необходимую для передачи всех полутонов, присутствующих в исходном объекте, мы прекрасно справимся с поставленной задачей – получим отлично проработанное как в светах, так и в тенях изображение. Наш светоприёмник (матрица или плёнка) как раз уместит в своём диапазоне весь диапазон яркостей объекта.

Усложняем задачу – выходим за рамки средней съёмки – добавляем солнышко. Диапазон яркостей сразу увеличивается, появляются световые блики, отражения, глубокие тени. Глаз с этим справляется на «ура», ему только не очень нравится смотреть на слишком яркие источники света, а вот для фотоаппарата наступают тяжёлые минуты. Как угодить хозяину? Что выбрать? Увеличишь экспозицию – получишь выбитые зубы света и невестино платье станет просто белым куском, уменьшишь, постараешься поймать платье невесты, так у жениха костюм – сплошное чёрное пятно. Диапазон яркостей объекта намного превышает возможности светоприёмника, и в этом случае приходится идти на компромисс, подключать творчество, опыт и знание теории.

«А может сделать силуэт, да не париться? Так даже лучше» — это творчество .

«Экспозиция – по лицу. А платье и пиджак подтянем кривыми в Любимой Программе» — это знание теории .

«Отведу-ка я пару воон под то деревце, и таким образом выровняю перепад яркостей, а, следовательно, и динамический диапазон» — это опыт .

Изменить динамический диапазон своего аппарата мы не в силах, мы можем только помочь ему принять верное решение в сложных ситуациях. Мы помогаем ему в выборе — какая жертва для нас, как для автора снимка менее трагична.

Надеюсь, теперь стало более понятно, как связано понятие динамического диапазона с экспозицией. Чтобы получить возможно более качественный снимок, необходимо весь диапазон полутонов объекта уместить в динамический диапазон аппарата, либо – решая творческие задачи – сместить диапазон яркостей объекта в одну или другую сторону.

Одним из способов увеличения динамического диапазона является многократная съёмка объекта с разными экспозициями с последующим цифровым «склеиванием», объединением кадров в одно изображение. Такой способ носит название HDR — High Dinamic Range.

Последний абзац посвящу извинениям. Дело в том, что на самом деле понятие «динамический диапазон» довольно сильно зависит от способа измерения — по контрастности, по плотности или f-ступенями, от цветового пространства, от освещенности (для отпечатков или мониторов), от области применения — для сканера, для матрицы, для монитора, для бумаги и прочее. Поэтому прямое сравнение динамического диапазона, как это проделали мы, если честно, довольно значительно грешит против настоящей, скрупулёзной физики. В своё оправдание скажу, что я попытался дать возможно более понятное объяснение термина. За более детальным (строгим) определением отсылаю читателя в просторы сети (вот хороший пример для начала — «Динамический диапазон в цифровой фотографии «).

И ещё. Ну это уже точно самый последний абзац. С понятиями «Динамический диапазон» и «Экспозиция» очень тесно связна интереснейшая «Зонная теория Анселя Адамса». Точнее, придумал теорию не Адамс, но он здорово популяризовал её, развил и теоретически обосновал, так что теперь она носит его имя. При случае обязательно познакомьтесь с ней.

Удачных снимков!

Нет связанных статей.

Я думаю, что многие, взяв в руки фотоаппарат, не раз замечали, что наш глаз видит совсем иначе, чем камера. Особенно часто это заметно в облачный день: мы видим небо и отдельные облака, а на фотографии просто белое пятно, или наоборот — небо реальное, с текстурой, но все, что внизу, темное как-будто вечером. Этот эффект напрямую зависит от широты динамического диапазона камеры. В сегодняшней статье как раз и попробуем разобраться, что же такое динамический диапазон и сформулируем несколько правил, которые позволят избежать ошибок с ним связанных.

Для начала давайте определимся с самим понятием. Динамический диапазон — это способность камеры одновременно передавать и светлые и темные детали снимаемой сцены. В качестве примера можно представить себе картинку плавно залитую от черного к белому цвету.

Верхняя полоска показывает, как видим мы, вторая, как «видит» сцену камера. Ее динамический диапазон уже, чем у человеческого глаза, и часть темных и светлых деталей будет потеряна, вместо них будет равномерный черный или белый цвет соответственно. Если мы намеренно укажем камере на тени, то динамический диапазон не расширится, он сдвинется за счет увеличения потерь в светах, как на третьей полосе. Если наоборот, попробуем сохранить яркие детали, у нас возрастут потери в тенях (четвертая полоска). Конечно это очень упрощенный вариант, ведь мы видим в цвете, да и способность глаза к адаптации в различных условиях освещения не позволяет напрямую сравнивать его с матрицей камеры, но в целом картинка похожая.

В качестве более реального примера фотография выше. Кадр был сделан в одинадцать часов утра, когда солнце было уже высоко, при почти безоблачном небе, вспышка была направлена в сторону т.е. ее воздействие на освещенность сцены минимально. В результате, из-за нехватки динамического диапазона, мы видим большое светлое пятно на заднем плане, которое осталось практически без деталей, при этом сама фотография получилась темноватой. На самом деле программными средствами этот кадр довольно легко исправить, но пример достаточно показательный.

Хочу отметить, что ширина динамического диапазона камеры зависит от многих параметров, но прежде всего от размера матрицы. Грубо говоря, чем больше матрица фотоаппарата, тем шире ее динамический диапазон. В тенях он ограничен уровнем шума и соответственно алгоритмами шумоподавления. В светах — возможностями матрицы анализировать «количество» света без засветки т.е. ее светочувствительностью. Это можно считать еще одним приемуществом зеркальных камер над мыльницами, можно сказать, что они всегда будут давать картинку с большим количество деталей в светах и тенях. На фотографии слева можно рассмотреть и решетку на окне и складки на одеяле, для большинства мыльниц сохранить эти части изображения было бы непосильной задачей.

Еще одной интересной особенностью современных фотокамер является неравномерность динамического диапазона — он как бы смещен в светлую часть, т.е. камера лучше «видит» светлые детали, чем темные. Это опять же обусловленно появлением цифрового шума на темных областях кадра.

Чем это важно для нас с практической точки зрения? В первую очередь тем, что мы можем сформулировать некоторые правила, которые помогут избежать потери деталей в сложных условиях освещения. при этом не стоит рассматривать потерянные детали как что-то несущественное, они могут координально изменить снимок. Скажем при съемке в солнечный день, в тени, на улице, сохранив небо, мы рискуем получить вместо зданий просто обширную темную область на фотографии. Итак, несколько простых правил, которые помогут избежать самых серьезных ошибок.

  • Лучше сделать снимок более светлым, чем затемнить его. Детали в тенях из-за шума «вытянуть» сложнее, чем в светах. Конечно это верно для более-менее ровной экспозиции, в случае, когда заведомо появятся пересветы (пасмурное небо) при замере экспозиции по темным областям, лучше пожертвовать тенями, но проработать какие-то детали в светах.
  • При большой разнице яркостей фотографируемой сцены нужно или постараться выровнить яркость или замерять экспозицию по темной части.
  • Лучшее время для съемки утро или вечер, в полдень солнце очень яркое, а тени становятся слишком темными и камера не сможет зафиксировать все детали.
  • Для портретной съемки в солнечный день нужно использовать дополнительное освещение или стараться снимать в тени, чтобы избежать излишне жестких теней.
  • При прочих равных лучше пользоваться наименьшим доступным значением ISO.

Эти правила не стоит рассматривать, как жесткие и неизменные, наоборот, в некоторых случаях их нужно применять с точностью до наоборот. Например, вам хочется получить очень контрастный городской пейзаж, как вариант вы можете сделать его как раз в полдень, когда свет наиболее резкий. Но все-таки в большинстве случаев следование им поможет сделать фотографии лучше.

В следующих статьях на эту тему мы поговорим о возможностях расширения динамического диапазона в процессе обработки фотографий и специальных приемах съемки.

Приветствую вас, уважаемый читатель. С вами на связи, Тимур Мустаев. Наверняка вы задавались вопросом: «А что может моя камера?» Для ответа на него многие ограничиваются прочтением технических характеристик на коробке, корпусе или сайте производителя, но для вас этого явно недостаточно, не просто так же вы забрели на страницы моего блога.

Сейчас я постараюсь рассказать вам, что такое динамический диапазон фотоаппарата – характеристике, которую невозможно выразить в численном эквиваленте.

Что это такое?

Немного порывшись в терминах, можно выявить, что динамический диапазон – способность камеры распознавать и сохранять светлые и тёмные участки кадра одновременно.

Второе определение гласит, что это охват всех тонов между чёрным и белым, которые камера способна захватить. Оба варианта верны и говорят об одном и том же. Обобщая выше написанное, можно резюмировать: динамический диапазон определяет, какое количество деталей можно «вытащить» из участков разной тональности снимаемого кадра.

Очень часто этот параметр ассоциируют с . Почему? Всё просто: практически всегда именно экспонирование по определённому участку сцены определяет, что на конечном изображении будет ближе к чёрному или к белому.

Тут стоит отметить, что при экспонировании по светлому участку «спасти» снимок будет несколько проще, ведь пересвеченные участки восстановлению, можно сказать, не подлежат, о чём я рассказывал в статье о графических редакторах.

Но не всегда перед фотографом стоит задача получить максимально информативный кадр. Чаще наоборот, некоторые детали лучше было бы скрыть. К тому же, если вместо чёрных и белых деталей на снимке начнут появляться серые – это негативно скажется на контрастности и общем восприятии снимка.

Поэтому широкий динамический диапазон не всегда играет решающую роль в получении качественной фотографии.

Из этого можно сделать следующий вывод: решающим фактором является не максимальное значение динамического диапазона, а осознание того, как его можно использовать. Именно фактором получения максимально красивого сюжета оперируют многие топовые фотографы для выбора точки экспонирования, а идеальный кадр получается только после достойной обработки.

Как видит мир камера?

Цифровые камеры в качестве светочувствительного элемента используют матрицу. Так вот, за каждый пиксель на конечном изображении здесь отвечает специальный фотодиод, который превращает в электрический заряд количество фотонов, полученных из объектива. Чем их больше – тем выше заряд, а если их нет вовсе или превышен динамический диапазон сенсора, то пиксель будет чёрным или белым соответственно.

Помимо этого, матрицы в фотокамерах бывают разных размеров, могут производиться по разным технологиям. В купе все параметры влияют на размер фотодатчика, от которого зависит широта охвата светового диапазона. К примеру, если рассмотреть камеры в смартфонах, то размер их сенсора настолько мал, что не составляет даже пятой части от габаритов .

Как следствие, мы получаем более низкий динамический диапазон. Тем не менее, некоторые производители увеличивают размер пикселей в камерах своих девайсов, говорят, что смартфоны способны вытеснить фотокамеры с рынка. Да, они могут вытеснить любительские мыльницы, но до DSLR, то есть зеркальных, им далековато.

В качестве аналогии многие фотографы приводят сосуды разных размеров. Так, пиксели смартфонных камер часто принимают за стаканы, а в DSLR – за вёдра. К чему это всё? К тому, что, к примеру, 16 миллионов стаканов поместят в себя меньше воды, чем 16 миллионов вёдер. То же самое и с сенсорами, только вместо сосудов у нас фотодатчики, а воду заменяют фотоны.

Тем не менее, сравнение качества картинки, полученной на мобильный телефон и зеркальную камеру, может показать их сходство. К тому же, некоторые из первых с недавнего времени начали поддерживать съёмку в RAW. Но сходство будет таковым только при идеальных условиях освещения. Как только речь пойдёт о низко-контрастных сценах – девайсы с маленькими сенсорами останутся позади.

Разрядность изображения

Этот параметр также тесно связан с динамическим диапазоном. Связь эта базируется на том, что именно разрядность сообщает камере сколько тонов нужно воспроизвести в изображении. Это говорит о том, что цветные снимки с цифровой камеры, которые являются таковыми по умолчанию, могут быть засняты монохромно. Почему? Потому что матрица, как правило, записывает не цветовую палитру, а количество света в цифровом эквиваленте.

Зависимость здесь пропорциональная: если изображение 1-битное, то пиксели на нём могут быть либо чёрными, либо белыми. 2 бита добавляют к этим вариантам ещё 2 оттенка серого. И так в геометрической прогрессии. Когда дело доходит до работы с цифровыми сенсорами, чаще всего используются 16-битные, так как их охват тонов сильно выше датчиков, работающих с меньшим количеством бит.

Что это нам даёт? Камера сможет обрабатывать большее количество тонов, что позволит более точно передать световую картину. Но здесь есть небольшой нюанс. Некоторые аппараты не могут воспроизводить изображения с максимальной битностью, на которую рассчитаны их матрица и процессор. Такая тенденция наблюдается на некоторых продуктах компании Nikon. Здесь исходники могут быть 12- и 14-битными. Камеры Canon, кстати, таким не грешат, насколько мне известно.

Какие могут быть последствия у таких камер? Здесь всё зависит от снимаемой сцены. К примеру, если кадр требует высокого динамического диапазона, то некоторые пиксели, максимально близкие к чёрному и белому, но являющиеся оттенками серого, могут быть сохранены как чёрный или белый соответственно. В остальных случаях разницу заметить будет практически невозможно.

Общий вывод

Итак, какой можно сделать вывод из всего вышеописанного?

  • Во-первых, стараться выбирать камеру с большой матрицей, если это нужно.
  • Во-вторых, выбирать максимально удачные точки для экспонирования. Если это невозможно, то лучше сделать несколько снимков с разными точками замера экспозиции и выбрать наиболее удачный.
  • В-третьих, стараться хранить изображения с максимально допустимой битовой глубиной, в «сыром виде», то есть в формате RAW.

Если вы начинающий фотограф и вас интересует больше информации о цифровом зеркальном фотоаппарате, да еще и с наглядными видео примерами, тогда не упустите возможность изучить курсы «» или «Моя первая ЗЕРКАЛКА ». Именно их я рекомендую фотографу-новичку. На сегодняшний день они одни из лучших курсов для детального понимания своего фотоаппарата.

Моя первая ЗЕРКАЛКА — для сторонников фотоаппарата CANON.

Цифровая зеркалка для новичка 2.0 — для сторонников фотоаппарата NIKON.

В общем-то, это всё, что я хотел рассказать. Надеюсь, статьёй вы остались довольны и почерпнули из неё для себя что-то новое. Если это так, то советую подписаться на мой блог и рассказать о статье своим друзьям. Скоро мы опубликуем ещё несколько полезных и интересных статей. Всего доброго!

Всех вам благ, Тимур Мустаев.



Рассказать друзьям