Градиентный метод. Градиентный метод первого порядка

💖 Нравится? Поделись с друзьями ссылкой

При оптимизации методом градиента оптимум исследуемого объекта ищут в направлении наиболее быстрого возрастания (убывания) выходной переменной, т.е. в направлении градиента. Но прежде чем сделать шаг в направлении градиента, необходимо его рассчитать. Градиент можно рассчитать либо по имеющейся модели

моделирование динамический градиентный полиномиальный

где - частная производная по i-му фактору;

i, j, k - единичные векторы в направлении координатных осей факторного пространства, либо по результатам n пробных движений в направлении координатных осей.

Если математическая модель статистического процесса имеет вид линейного полинома, коэффициенты регрессии b i которого являются частными производными разложения функции y = f(X) в ряд Тейлора по степеням x i , то оптимум ищут в направлении градиента с некоторым шагом h i:

пкфв н(Ч)= и 1 р 1 +и 2 р 2 +…+и т р т

Направление корректируют после каждого шага.

Метод градиента вместе с его многочисленными модификациями является распространенным и эффективным методом поиска оптимума исследуемых объектов. Рассмотрим одну из модификаций метода градиента - метод крутого восхождения.

Метод крутого восхождения, или иначе метод Бокса-Уилсона, объединяет в себе достоинства трех методов - метода Гаусса-Зейделя, метода градиентов и метода полного (или дробного) факторного экспериментов, как средства получения линейной математической модели. Задача метода крутого восхождения заключается в том, чтобы шаговое движение осуществлять в направлении наискорейшего возрастания (или убывания) выходной переменной, то есть по grad y(X). В отличии от метода градиентов, направление корректируется не после каждого следующего шага, а при достижении в некоторой точке на данном направлении частного экстремума целевой функции, как это делается в методе Гаусса-Зейделя. В точке частного экстремума ставится новый факторный эксперимент, определяется математическая модель и вновь осуществляется крутое восхождение. В процессе движения к оптимуму указанным методом регулярно проводиться статистический анализ промежуточных результатов поиска. Поиск прекращается, когда квадратичные эффекты в уравнении регрессии становятся значимыми. Это означает, что достигнута область оптимума.

Опишем принцип использования градиентных методов на примере функции двух переменных

при наличии двух дополнительных условий:

Этот принцип (без изменения) можно применить при любом числе переменных, а также дополнительных условий. Рассмотрим плоскость x 1 , x 2 (Рис. 1). Согласно формуле (8) каждой точке соответствует некоторое значение F. На Рис.1 линии F = const, принадлежащие этой плоскости, представлены замкнутыми кривыми, окружающими точку M * , в которой F минимально. Пусть в начальный момент значения x 1 и x 2 соответствуют точке M 0 . Цикл расчета начинается с серии пробных шагов. Сначала величине x 1 дается небольшое приращение; в это время значение x 2 неизменно. Затем определяется полученное при этом приращение величины F, которое можно считать пропорциональным значению частной производной

(если величина всегда одна и та же).

Определение частных производных (10) и (11) означает, что найден вектор с координатами и, который называется градиентом величины F и обозначается так:

Известно, что направление этого вектора совпадает с направлением наиболее крутого возрастания величины F. Противоположное ему направление - это «наискорейший спуск», другими словами, наиболее крутое убывание величины F.

После нахождения составляющих градиента пробные движения прекращаются и осуществляются рабочие шаги в направлении, противоположном направлению градиента, причем величина шага тем больше, чем больше абсолютная величина вектора grad F. Эти условия осуществляются, если величины рабочих шагов и пропорциональны полученным ранее значениям частных производных:

где б - положительная константа.

После каждого рабочего шага оценивается приращение величины F. Если оно оказывается отрицательным, то движение происходит в правильном направлении и нужно двигаться в том же направлении M 0 M 1 дальше. Если же в точке M 1 результат измерения показывает, что, то рабочие движения прекращаются и начинается новая серия пробных движений. При этом определяется градиент gradF в новой точке M 1 , затем рабочее движение продолжается по новому найденному направлению наискорейшего спуска, т. е. по линии M 1 M 2 , и т.д. Этот метод называется методом наискорейшего спуска/крутого восхождения.

Когда система находится вблизи минимума, показателем чего является малое значение величины

происходит переключение на более «осторожный» метод поиска, так называемый метод градиента. От метода наискорейшего спуска он отличается тем, что после определения градиента gradF делается лишь один рабочий шаг, а затем в новой точке опять начинается серия пробных движений. Такой метод поиска обеспечивает более точное установление минимума по сравнению с методом наискорейшего спуска, между тем как последний позволяет быстрее приблизиться к минимуму. Если в процессе поиска точка М доходит до границы допустимой области и хотя бы одна из величин М 1 , М 2 меняет знак, метод меняется и точка М начинает двигаться вдоль границы области.

Эффективность метода крутого восхождения зависит от выбора масштаба переменных и вида поверхности отклика. Поверхность со сферическими контурами обеспечивает быстрое стягивание к оптимуму.

К недостаткам метода крутого восхождения следует отнести:

1. Ограниченность экстраполяции. Двигаясь вдоль градиента, мы основываемся на экстраполяции частных производных целевой функции по соответствующим переменным. Однако форма поверхности отклика может изменяться и необходимо изменять направление поиска. Другими словами, движение на плоскости не может быть продолжительным.

2. Трудность поиска глобального оптимума. Метод применим для отыскания только локальных оптимумов.

В основе метода лежит следующая итерационная модификация формулы

x k +1 = x k + a k s(x k),

x k+1 = x k - a k Ñ f(x k), где

a - заданный положительный коэффициент;

Ñ f(x k) - градиент целевой функции первого порядка.

Недостатки:

    необходимость выбора подходящего значения ;

    медленная сходимость к точке минимума ввиду малости f(x k) в окрестности этой точки.

Метод наискорейшего спуска

Свободен от первого недостатка простейшего градиентного метода, т.к. a k вычисляется путем решения задачи минимизации Ñ f(x k) вдоль направления Ñ f(x k) с помощью одного из методов одномерной оптимизации x k+1 = x k - a k Ñ f(x k).

Данный метод иногда называют методом Коши.

Алгоритм характеризуется низкой скоростью сходимости при решении практических задач. Это объясняется тем, что изменения переменных непосредственно зависит от величины градиента, которая стремится к нулю в окрестности точки минимума и отсутствует механизм ускорения на последних итерациях. Поэтому, учитывая устойчивость алгоритма, метод наискорейшего спуска часто используется как начальная процедура поиска решения (из точек, расположенных на значительных расстояниях от точки минимума).

Метод сопряженных направлений

Общая задача нелинейного программирования без ограничений сводится к следующему: минимизировать f(x), x E n , где f(x) является целевой функцией. При решении этой задачи мы используем методы минимизации, которые приводят к стационарной точке f(x), определяемой уравнением f(x *)=0. Метод сопряженных направлений относится к методам минимизации без ограничений, использующим производные. Задача: минимизировать f(x), x E n , где f(x) является целевой функцией n независимых переменных. Важной особенностью является быстрая сходимость за счет того, что при выборе направления используется матрица Гессе, которая описывает область топологии поверхности отклика. В частности, если целевая функция квадратичная, то можно получить точку минимума не более чем за количество шагов, равное размерности задачи.

Для применения метода на практике его необходимо дополнить процедурами проверки сходимости и линейной независимости системы направлений. Методы второго порядка

Метод Ньютона

Последовательное применение схемы квадратичной аппроксимации приводит к реализации оптимизационного метода Ньютона по формуле

x k +1 = x k - Ñ 2 f(x k -1) Ñ f(x k).

Недостатком метода Ньютона является его недостаточная надежность при оптимизации не квадратичных целевых функций. Поэтому его часто модифицируют:

x k +1 = x k - a k Ñ 2 f(x k -1) Ñ f(x k), где

a k - параметр, выбираемый таким образом, чтобы f(x k+1) min.

2. Нахождение экстремума функции без ограничения

Дана некоторая функция f(х) на открытом интервале (а, в) изменения аргумента х. Предполагаем, что exst внутри этого интервала существует (нужно сказать, что в общем случае математически заранее это утверждать не могут; однако в технических приложениях очень часто наличие exst внутри некоторого интервала изменения интервала изменения аргумента может быть предсказано из физических соображений).

Определение exst. Функция f(x) заданная на интервале (а, в) имеет в точке x * max(min), если эту точку можно окружить таким интервалом (x * -ε, x * +ε), содержащимся в интервале (а, в), что для всех ее точек х, принадлежащих интервалу (x * -ε, x * +ε), выполняется неравенство:

f(x) ≤ f(x *) → для max

f(x) ≥ f(x *) → для min

Это определение не накладывает никаких ограничений на класс функций f(x), что, конечно, очень ценно.

Если ограничится для функций f(x), достаточно распространенным, но все же более узким классом гладких функций (под гладкими функциями мы будем понимать такие функции, которые непрерывны вместе со своими производными на интервале изменения аргумента), то можно воспользоваться теоремой Ферма, которая дает необходимые условия существования exst.

Теорема Ферма. Пусть функция f(x) определена в некотором интервале (а, в) и в точке "с" этого интервала принимает наибольшее (наименьшее) значение. Если существует в этой точке двухсторонняя конечная производная , то существования необходимоexst .

Примечание. Двухсторонняя производная характеризуется свойством иными словами, речь идет о том, что в точке "с" производная в пределе одна и та же при подходе к точке "с" слева и справа, т.е.f(x) – гладкая функция.

* В случае имеет местоmin, а при →max. Наконец, если при х=х 0 , то использование 2-ой производной не помогает и нужно воспользоваться, например, определением exst.

При решении задачи I необходимые условия exst (т.е. теорема Ферма) используется очень часто.

Если уравнение exst имеет вещественные корни, то точки, соответствующие этим корням, являются подозрительными наexst (но не обязательно самыми экстремумами, ибо имеем дело с необходимыми, а не с необходимыми и достаточными условиями). Так, например, в точке перегиба Х п имеет место , однако, как известно, это не экстремум.

Заметим ещё, что:

    из необходимых условий нельзя сказать, какой вид экстремума найден max или min: для определения этого нужны дополнительные исследования;

    из необходимых условий нельзя определить, глобальный это экстремум или локальный.

Поэтому, когда находят точки подозрительные на exst, их дополнительно исследуют, например, на основе определения exst или 2-ой производной.

Метод релаксации

Алгоритм метода заключается в отыскании осевого направления, вдоль которого целевая функция уменьшается наиболее сильно (при поиске минимума). Рассмотрим задачу безусловной оптимизации

Для определения осевого направления в начальной точке поиска из области определяются производные , , по всем независимым переменным. Осевому направлению соответствует наибольшая по модулю производная .

Пусть – осевое направление, т.е. .

Если знак производной отрицательный, функция убывает в направлении оси, если положительный – в обратном направлении:

В точке вычисляют . По направлению убывания функции производится один шаг, определяется и в случае улучшения критерия шаги продолжаются до тех пор, пока не будет найдено минимальное значение по выбранному направлению. В этой точке вновь определяются производные по всем переменным, за исключением тех, по которой осуществляется спуск. Снова находится осевое направление наиболее быстрого убывания , по которому производятся дальнейшие шаги и т.д.

Эту процедуру повторяют до тех пор, пока не достигается оптимальная точка, при движении из которой по любому осевому направлению дальнейшего убывания не происходит. На практике критерием окончания поиска служит условие

которое при превращается в точное условие равенства нулю производных в точке экстремума. Естественно условие (3.7) может быть использовано только в том случае, если оптимум лежит внутри допустимой области изменения независимых переменных . Если же оптимум попадает на границу области , критерий типа (3.7) непригоден и вместо него следует применять положительности всех производных по допустимым осевым направлениям.

Алгоритм спуска для выбранного осевого направления может быть записан так

(3.8)

где -значение варьируемой переменной на каждом шаге спуска;

Величина k+1 шага, которая может изменяться в зависимости от номера шага:

– функция знака z;

Вектор точки, в которой последний раз производилось вычисление производных ;



Знак “+” в алгоритме (3.8) принимается при поиске max I, а знак “-” – при поиске min I.Чем меньше шаг h., тем больше количество вычислений на пути движения к оптимуму. Но при слишком большой величине h вблизи оптимума может возникнуть зацикливание процесса поиска. Вблизи оптимума необходимо, чтобы выполнялось условие h

Простейший алгоритм изменения шага h состоит в следующем. В начале спуска задается шаг , равный например, 10% от диапазона d; изменения с этим шагом производится спуск по выбранному направлению до тез пор, пока выполняется условие для двух последующих вычислений

При нарушении условия на каком-либо шаге направление спуска на оси изменяется на обратное и спуск продолжается из последней точки с уменьшенной вдвое величиной шага.

Формальная запись этого алгоритма следующая:

(3.9)

В результате использования такой стратегии ша спуска будет уменьшатся в районе оптимума по данному направлению и поиск по направлению можно прекратить, когда станет меньше E.

Затем отыскивается новое осевое направление начальный шаг для дальнейшего спуска, обычно меньший пройденного вдоль предыдущего осевого направления. Характер движения в оптимуме в данном методе показан на рисунке 3.4.

Рисунок 3.5 – Траектория движения к оптимуму в методе релаксации

Улучшение алгоритма поиска по данному методу может быть достигнуто путем применения методов однопараметрической оптимизации. При этом может быть предложена схема решения задачи:

Шаг 1. – осевое направление,

; , если ;

Шаг 2. – новое осевое направление;

Метод градиента

В этом методе используется градиент функции . Градиентом функции в точке называется вектор, проекциями которого на координатные оси являются частные производные функции по координатам (рис. 6.5)

Рисунок 3.6 – Градиент функции

.

Направление градиента – это направление наиболее быстрого возрастания функции (наиболее крутого “склона” поверхности отклика). Противоположное ему направление (направление антиградиента) – это направление наибыстрейшего убывания (направление наискорейшего “спуска” величин ).

Проекция градиента на плоскость переменных перпендикулярна касательной к линии уровня , т.е. градиент ортогонален к линиям постоянного уровня целевой функции (рис. 3.6).

Рисунок 3.7 – Траектория движения к оптимуму в методе

градиента

В отличие от метода релаксации в методе градиента шаги совершаются в направлении наибыстрейшего уменьшения (увеличения) функции .

Поиск оптимума производится в два этапа. На первом этапе находятся значения частных производных по всем переменным , которые определяют направление градиента в рассматриваемой точке. На втором этапе осуществляется шаг в направлении градиента при поиске максимума или в противоположном направлении – при поиске минимума.

Если аналитическое выражение неизвестно, то направление градиента определяется поиском на объекте пробных движений. Пусть начальная точка. Дается приращение величина , при этом . Определяют приращение и производную

Аналогично определяют производные по остальным переменным. После нахождения составляющих градиента пробные движения прекращаются и начинаются рабочие шаги по выбранному направлению. Причем величина шага тем больше, чем больше абсолютная величина вектора .

При выполнении шага одновременно изменяются значения всех независимых переменных. Каждая из них получает приращение, пропорциональное соответствующей составляющей градиента

, (3.10)

или в векторной форме

, (3.11)

где – положительная константа;

“+” – при поиске max I;

“-” – при поиске min I.

Алгоритм градиентного поиска при нормировании градиента (деление на модуль) применяется в виде

; (3.12)

(3.13)

Определяет величину шага по направлению градиента.

Алгоритм (3.10) обладает тем достоинством, что при приближении к оптимуму длина шага автоматически уменьшается. А при алгоритме (3.12) стратегию изменения можно строить независимо от абсолютной величины коэффициента.

В методе градиента каждый разделяется один рабочий шаг, после которого вновь вычисляются производные, определяется новое направление градиента и процесс поиска продолжается (рис. 3.5).

Если размер шага выбран слишком малым, то движение к оптимуму будет слишком долгим из-за необходимости вычисления в очень многих точках. Если же шаг выбран слишком большим, в район оптимума может возникнуть зацикливание.

Процесс поиска продолжается до тех пор, пока , , не станут близки к нулю или пока не будет достигнута граница области задания переменных.

В алгоритме с автоматическим уточнением шага величину уточняют так, чтобы изменение направления градиента в соседних точках и

Критерии окончания поиска оптимума:

; (3.16)

; (3.17)

где – норма вектора.

Поиск завершается при выполнении одного из условий (3.14) – (3.17).

Недостатком градиентного поиска (так же и рассмотренных выше методов) является то, что при его использовании можно обнаружить только локальный экстремум функции . Для отыскания других локальных экстремумов необходимо производить поиск из других начальных точек.

Градиентные методы

Градиентные методы безусловной оптимизации используют только первые производные целевой функции и являются методами линейной аппроксимации на каждом шаге, т.е. целевая функция на каждом шаге заменяется касательной гиперплоскостью к ее графику в текущей точке.

На k-м этапе градиентных методов переход из точки Xk в точку Xk+1 описывается соотношением:

где k - величина шага, k - вектор в направлении Xk+1-Xk.

Методы наискорейшего спуска

Впервые такой метод рассмотрел и применил еще О. Коши в XVIII в. Идея его проста: градиент целевой функции f(X) в любой точке есть вектор в направлении наибольшего возрастания значения функции. Следовательно, антиградиент будет направлен в сторону наибольшего убывания функции и является направлением наискорейшего спуска. Антиградиент (и градиент) ортогонален поверхности уровня f(X) в точке X. Если в (1.2) ввести направление

то это будет направление наискорейшего спуска в точке Xk.

Получаем формулу перехода из Xk в Xk+1:

Антиградиент дает только направление спуска, но не величину шага. В общем случае один шаг не дает точку минимума, поэтому процедура спуска должна применяться несколько раз. В точке минимума все компоненты градиента равны нулю.

Все градиентные методы используют изложенную идею и отличаются друг от друга техническими деталями: вычисление производных по аналитической формуле или конечно-разностной аппроксимации; величина шага может быть постоянной, меняться по каким-либо правилам или выбираться после применения методов одномерной оптимизации в направлении антиградиента и т.д. и т.п.

Останавливаться подробно мы не будем, т.к. метод наискорейшего спуска не рекомендуется обычно в качестве серьезной оптимизационной процедуры.

Одним из недостатков этого метода является то, что он сходится к любой стационарной точке, в том числе и седловой, которая не может быть решением.

Но самое главное - очень медленная сходимость наискорейшего спуска в общем случае. Дело в том, что спуск является "наискорейшим" в локальном смысле. Если гиперпространство поиска сильно вытянуто ("овраг"), то антиградиент направлен почти ортогонально дну "оврага", т.е. наилучшему направлению достижения минимума. В этом смысле прямой перевод английского термина "steepest descent", т.е. спуск по наиболее крутому склону более соответствует положению дел, чем термин "наискорейший", принятый в русскоязычной специальной литературе. Одним из выходов в этой ситуации является использование информации даваемой вторыми частными производными. Другой выход - изменение масштабов переменных.

линейный аппроксимация производная градиент

Метод сопряженного градиента Флетчера-Ривса

В методе сопряженного градиента строится последовательность направлений поиска, являющихся линейными комбинациями, текущего направления наискорейшего спуска, и, предыдущих направлений поиска, т.е.

причем коэффициенты выбираются так, чтобы сделать направления поиска сопряженными. Доказано, что

и это очень ценный результат, позволяющий строить быстрый и эффективный алгоритм оптимизации.

Алгоритм Флетчера-Ривса

1. В X0 вычисляется.

2. На k-ом шаге с помощь одномерного поиска в направлении находится минимум f(X), который и определяет точку Xk+1.

  • 3. Вычисляются f(Xk+1) и.
  • 4. Направление определяется из соотношения:
  • 5. После (n+1)-й итерации (т.е. при k=n) производится рестарт: полагается X0=Xn+1 и осуществляется переход к шагу 1.
  • 6. Алгоритм останавливается, когда

где - произвольная константа.

Преимуществом алгоритма Флетчера-Ривса является то, что он не требует обращения матрицы и экономит память ЭВМ, так как ему не нужны матрицы, используемые в Ньютоновских методах, но в то же время почти столь же эффективен как квази-Ньютоновские алгоритмы. Т.к. направления поиска взаимно сопряжены, то квадратичная функция будет минимизирована не более, чем за n шагов. В общем случае используется рестарт, который позволяет получать результат.

Алгоритм Флетчера-Ривса чувствителен к точности одномерного поиска, поэтому при его использовании необходимо устранять любые ошибки округления, которые могут возникнуть. Кроме того, алгоритм может отказать в ситуациях, где Гессиан становится плохо обусловленным. Гарантии сходимости всегда и везде у алгоритма нет, хотя практика показывает, что почти всегда алгоритм дает результат.

Ньютоновские методы

Направление поиска, соответствующее наискорейшему спуску, связано с линейной аппроксимацией целевой функции. Методы, использующие вторые производные, возникли из квадратичной аппроксимации целевой функции, т. е. при разложении функции в ряд Тейлора отбрасываются члены третьего и более высоких порядков.

где - матрица Гессе.

Минимум правой части (если он существует) достигается там же, где и минимум квадратичной формы. Запишем формулу для определения направления поиска:

Минимум достигается при

Алгоритм оптимизации, в котором направление поиска определяется из этого соотношения, называется методом Ньютона, а направление - ньютоновским направлением.

В задачах поиска минимума произвольной квадратичной функции с положительной матрицей вторых производных метод Ньютона дает решение за одну итерацию независимо от выбора начальной точки.

Классификация Ньютоновских методов

Собственно метод Ньютона состоит в однократном применении Ньютоновского направления для оптимизации квадратичной функции. Если же функция не является квадратичной, то верна следующая теорема.

Теорема 1.4. Если матрица Гессе нелинейной функции f общего вида в точке минимума X* положительно определена, начальная точка выбрана достаточно близко к X* и длины шагов подобраны верно, то метод Ньютона сходится к X* с квадратичной скоростью.

Метод Ньютона считается эталонным, с ним сравнивают все разрабатываемые оптимизационные процедуры. Однако метод Ньютона работоспособен только при положительно определенной и хорошо обусловленной матрицей Гессе (определитель ее должен быть существенно больше нуля, точнее отношение наибольшего и наименьшего собственных чисел должно быть близко к единице). Для устранения этого недостатка используют модифицированные методы Ньютона, использующие ньютоновские направления по мере возможности и уклоняющиеся от них только тогда, когда это необходимо.

Общий принцип модификаций метода Ньютона состоит в следующем: на каждой итерации сначала строится некоторая "связанная" с положительно определенная матрица, а затем вычисляется по формуле

Так как положительно определена, то - обязательно будет направлением спуска. Процедуру построения организуют так, чтобы она совпадала с матрицей Гессе, если она является положительно определенной. Эти процедуры строятся на основе некоторых матричных разложений.

Другая группа методов, практически не уступающих по быстродействию методу Ньютона, основана на аппроксимации матрицы Гессе с помощью конечных разностей, т.к. не обязательно для оптимизации использовать точные значения производных. Эти методы полезны, когда аналитическое вычисление производных затруднительно или просто невозможно. Такие методы называются дискретными методами Ньютона.

Залогом эффективности методов ньютоновского типа является учет информации о кривизне минимизируемой функции, содержащейся в матрице Гессе и позволяющей строить локально точные квадратичные модели целевой функции. Но ведь возможно информацию о кривизне функции собирать и накапливать на основе наблюдения за изменением градиента во время итераций спуска.

Соответствующие методы, опирающиеся на возможность аппроксимации кривизны нелинейной функции без явного формирования ее матрицы Гессе, называют квази-Ньютоновскими методами.

Отметим, что при построении оптимизационной процедуры ньютоновского типа (в том числе и квази-Ньютоновской) необходимо учитывать возможность появления седловой точки. В этом случае вектор наилучшего направления поиска будет все время направлен к седловой точке, вместо того, чтобы уходить от нее в направлении "вниз".

Метод Ньютона-Рафсона

Данный метод состоит в многократном использовании Ньютоновского направления при оптимизации функций, не являющихся квадратичными.

Основная итерационная формула многомерной оптимизации

используется в этом методе при выборе направления оптимизации из соотношения

Реальная длина шага скрыта в ненормализованном Ньютоновском направлении.

Так как этот метод не требует значения целевой функции в текущей точке, то его иногда называют непрямым или аналитическим методом оптимизации. Его способность определять минимум квадратичной функции за одно вычисление выглядит на первый взгляд исключительно привлекательно. Однако это "одно вычисление" требует значительных затрат. Прежде всего, необходимо вычислить n частных производных первого порядка и n(n+1)/2 - второго. Кроме того, матрица Гессе должна быть инвертирована. Это требует уже порядка n3 вычислительных операций. С теми же самыми затратами методы сопряженных направлений или методы сопряженного градиента могут сделать порядка n шагов, т.е. достичь практически того же результата. Таким образом, итерация метода Ньютона-Рафсона не дает преимуществ в случае квадратичной функции.

Если же функция не квадратична, то

  • - начальное направление уже, вообще говоря, не указывает действительную точку минимума, а значит, итерации должны повторяться неоднократно;
  • - шаг единичной длины может привести в точку с худшим значением целевой функции, а поиск может выдать неправильное направление, если, например, гессиан не является положительно определенным;
  • - гессиан может стать плохо обусловленным, что сделает невозможным его инвертирование, т.е. определение направления для следующей итерации.

Сама по себе стратегия не различает, к какой именно стационарной точке (минимума, максимума, седловой) приближается поиск, а вычисления значений целевой функции, по которым можно было бы отследить, не возрастает ли функция, не делаются. Значит, все зависит от того, в зоне притяжения какой стационарной точки оказывается стартовая точка поиска. Стратегия Ньютона-Рафсона редко используется сама по себе без модификации того или иного рода.

Методы Пирсона

Пирсон предложил несколько методов с аппроксимацией обратного гессиана без явного вычисления вторых производных, т.е. путем наблюдений за изменениями направления антиградиента. При этом получаются сопряженные направления. Эти алгоритмы отличаются только деталями. Приведем те из них, которые получили наиболее широкое распространение в прикладных областях.

Алгоритм Пирсона № 2.

В этом алгоритме обратный гессиан аппроксимируется матрицей Hk, вычисляемой на каждом шаге по формуле

В качестве начальной матрицы H0 выбирается произвольная положительно определенная симметрическая матрица.

Данный алгоритм Пирсона часто приводит к ситуациям, когда матрица Hk становится плохо обусловленной, а именно - она начинает осцилировать, колеблясь между положительно определенной и не положительно определенной, при этом определитель матрицы близок к нулю. Для избежания этой ситуации необходимо через каждые n шагов перезадавать матрицу, приравнивая ее к H0.

Алгоритм Пирсона № 3.

В этом алгоритме матрица Hk+1 определяется из формулы

Hk+1 = Hk +

Траектория спуска, порождаемая алгоритмом, аналогична поведению алгоритма Дэвидона-Флетчера-Пауэлла, но шаги немного короче. Пирсон также предложил разновидность этого алгоритма с циклическим перезаданием матрицы.

Проективный алгоритм Ньютона-Рафсона

Пирсон предложил идею алгоритма, в котором матрица рассчитывается из соотношения

H0=R0, где матрица R0 такая же как и начальные матрицы в предыдущих алгоритмах.

Когда k кратно числу независимых переменных n, матрица Hk заменяется на матрицу Rk+1, вычисляемую как сумма

Величина Hk(f(Xk+1) - f(Xk)) является проекцией вектора приращения градиента (f(Xk+1)-f(Xk)), ортогональной ко всем векторам приращения градиента на предыдущих шагах. После каждых n шагов Rk является аппроксимацией обратного гессиана H-1(Xk), так что в сущности осуществляется (приближенно) поиск Ньютона.

Метод Дэвидона-Флетчера-Пауэла

Этот метод имеет и другие названия - метод переменной метрики, квазиньютоновский метод, т.к. он использует оба эти подхода.

Метод Дэвидона-Флетчера-Пауэла (ДФП) основан на использовании ньютоновских направлений, но не требует вычисления обратного гессиана на каждом шаге.

Направление поиска на шаге k является направлением

где Hi - положительно определенная симметричная матрица, которая обновляется на каждом шаге и в пределе становится равной обратному гессиану. В качестве начальной матрицы H обычно выбирают единичную. Итерационная процедура ДФП может быть представлена следующим образом:

  • 1. На шаге k имеются точка Xk и положительно определенная матрица Hk.
  • 2. В качестве нового направления поиска выбирается

3. Одномерным поиском (обычно кубической интерполяцией) вдоль направления определяется k, минимизирующее функцию.

4. Полагается.

5. Полагается.

6. Определяется и. Если Vk или достаточно малы, процедура завершается.

  • 7. Полагается Uk = f(Xk+1) - f(Xk).
  • 8. Матрица Hk обновляется по формуле

9. Увеличить k на единицу и вернуться на шаг 2.

Метод эффективен на практике, если ошибка вычислений градиента невелика и матрица Hk не становится плохо обусловленной.

Матрица Ak обеспечивает сходимость Hk к G-1, матрица Bk обеспечивает положительную определенность Hk+1 на всех этапах и в пределе исключает H0.

В случае квадратичной функции

т.е. алгоритм ДФП использует сопряженные направления.

Таким образом, метод ДФП использует как идеи ньютоновского подхода, так и свойства сопряженных направлений, и при минимизации квадратичной функции сходится не более чем за n итераций. Если оптимизируемая функция имеет вид, близкий к квадратичной функции, то метод ДФП эффективен за счет хорошей аппроксимации G-1(метод Ньютона). Если же целевая функция имеет общий вид, то метод ДФП эффективен за счет использования сопряженных направлений.

Как мы уже отметили, задача оптимизации – это задача отыскания таких значений факторов х 1 = х 1* , х 2 = х 2* , …, х k = х k * , при которых функция отклика (у ) достигает экстремального значения у = ext (оптимума).

Известны различные методы решения задачи оптимизации. Одним из наиболее широко применяемых является метод градиента, называемый также методом Бокса-Уилсона и методом крутого восхождения.

Рассмотрим сущность метода градиента на примере двухфакторной функции отклика y = f(x 1 , х 2 ). На рис. 4.3 в фак­торном пространстве изо­бражены кривые равных значений функции отклика (кривые уровня). Точке с координатами х 1 *, х 2 * соответствует экстремаль­ное значение функции от­клика у ext .

Если мы выбе­рем какую-либо точку фак­торного пространства в ка­честве исходной (х 1 0 , х 2 0), то наикратчайший путь к вершине функции откли­ка из этой точки – это путь, по кривой, касательная к которой в каждой точке совпадает с нормалью к кривой уровня, т.е. это путь в направлении гради­ента функции отклика.

Градиент непрерывной однозначной функции y = f (x 1 , х 2) – это вектор, определяемый по направлению градиентом с координатами:

где i, j – единичные векторы в направлении осей координат х 1 и х 2 . Частные производные и характеризуют направление вектора.

Поскольку нам неизвестен вид зависимости y = f (x 1 , х 2), мы не можем найти частные производные , и опреде­лить истинное направление градиента.

Согласно методу градиента в какой-то части факторного пространства выбирается исходная точка (исходные уровни) х 1 0 , х 2 0 . Относительно этих исходных уровней строится сим­метричный двухуровневый план эксперимента. Причем интер­вал варьирования выбирается настолько малым, чтобы ли­нейная модель оказалась адекватной. Известно, что любая кривая на достаточно малом участке может быть аппрокси­мирована линейной моделью.

После построения симметричного двухуровневого плана решается интерполяционная задача, т.е. строится линейная модель:

и проверяется ее адекватность.

Если для выбранного интервала варьирования линейная мо­дель оказалась адекватной, то может быть определено на­правление градиента:

Таким образом, направление градиента функции отклика определяется значениями коэффициентов регрессии. Это означает, что мы будем двигаться в направлении градиента, если из точки с координатами ( ) перейдем в точку с координатами:

где m – положительное число, определяющее величину шага в на­правлении градиента.

Поскольку х 1 0 = 0 и х 2 0 = 0, то .

Определив направление градиента () и выбрав ве­личину шага m , осуществляем опыт на исходном уровне х 1 0 , х 2 0 .


Затем делаем шаг в направлении градиента, т.е. осу­ществляем опыт в точке с координатами . Если значе­ние функции отклика возросло по сравнению с ее значением в исходном уровне, делаем еще шаг в направлении градиен­та, т.е. осуществляем опыт в точке с координатами:

Движение по градиенту продолжаем до тех пор, пока функция отклика не начнет уменьшаться. На рис. 4.3 движение по градиенту соответствует прямой, вы­ходящей из точки (х 1 0 , х 2 0). Она постепенно отклоняется от истинного направления градиента, показанного штриховой линией, вследствие нелинейности функции отклика.

Как только в очередном опыте значение функции отклика уменьшилось, движение по градиенту прекращают, прини­мают опыт с максимальным значением функции отклика за новый исходный уровень, составляют новый симметричный двухуровневый план и снова решают интерполяционную за­дачу.

Построив новую линейную модель , осуществляют регрессионный анализ. Если при этом провер­ка значимости факторов показывает, что хоть один коэф

фи­циент , значит, область экстремума функции откли­ка (область оптимума) еще не достигнута. Определяется новое направление градиента и начинается движение к обла­сти оптимума.

Уточнение направления градиента и движение по гради­енту продолжаются до тех пор, пока в процессе решения очередной интерполяционной задачи проверка значимости факторов не покажет, что все факторы незначимы, т.е. все . Это означает, что область оптимума достигнута. На этом решение оптимизационной задачи прекращают, и принимают опыт с максимальным значением функции отклика за оптимум.

В общем виде последовательность действий, необходимых для решения задачи оптимизации методом градиента, может быть представлена в виде блок-схемы (рис. 4.4).

1) исходные уровни факторов (х j 0) следует выбирать воз­можно ближе к точке оптимума, если есть какая-то априор­ная информация о ее положении;

2) интервалы варьирования (Δх j ) надо выбирать такими, чтобы линейная модель наверняка оказалась адекватной. Границей снизу Δх j при этом является минимальное значе­ние интервала варьирования, при котором функция отклика остается значимой;

3) значение шага (т ) при движении по градиенту выбирают таким образом, чтобы наибольшее из произведений не превышало разности верхнего и нижнего уровней факто­ров в нормированном виде

.

Следовательно, . При меньшем значении т разность функции отклика в исходном уровне и в точке с координа­тами может оказаться незначимой. При большем значении шага возникает опасность проскочить оптимум функ­ции отклика.



Рассказать друзьям