Космогонические гипотезы. Анатолий томилин - занимательно о космогонии

💖 Нравится? Поделись с друзьями ссылкой

Теория Канта

На протяжении многих веков вопрос о происхождении Земли оставался монопо- лией философов, так как фактический материал в этой области почти полностью отсутствовал. Первые научные гипотезы относительно происхождения Земли и солнечной системы, основанные на астрономических наблюдениях, были выдви- нуты только лишь в xviii веке. С тех пор не переставали появляться все новые и новые теории, соответственно росту наших космогонических представлений. Первой в этом ряду была знаменитая теория, сформулированная в 1755 году немецким философом Иммануилом Кантом. Кант считал, что солнечная система возникла из некой первичной материи, до того свободно рассеянной в космосе. Частицы этой материи перемещались в различных направлениях и, сталкиваясь друг с другом, теряли скорость. Наиболее тяжелые и плотные из них под дей- ствием силы притяжения соединялись друг с другом, образуя центральный сгусток - Солнце, которое, в свою очередь, притягивало более удаленные, мелкие и легкие частицы.

Таким образом возникло некоторое количество вращающихся тел, траектории которых взаимно пересекались. Часть этих тел, первоначально двигавшихся в противоположных направлениях, в конечном счете были втянуты в единый поток и образовали кольца газообразной материи, расположенные приблизитель- но в одной плоскости и вращающиеся вокруг Солнца в одном направлении, не мешая друг другу. В отдельных кольцах образовывались более плотные ядра, к которым постепенно притягивались более легкие частицы, формируя шаро- видные скопления материи; так складывались планеты, которые продолжали кружить вокруг Солнца в той же плоскости, что и первоначальные кольца газо образного вещества.

Небулярная теория Лапласа

В 1796 году французский математик и астроном Пьер-Симон Лаплас выдвинул теорию, несколько отличную от предыдущей. Лаплас полагал, что Солнце существовало первоначально в виде огромной раскаленной газообразной туманности (небулы) с незначительной плотностью, но зато колоссальных размеров. Эта туманность, согласно Лапласу, первоначально медленно вращалась в пространстве. Под влиянием сил гравитации туманность постепенно сжималась, причем скорость ее вращения увеличивалась. Возрастающая в результате центробежная сила придавала туманности уплощенную, а затем и линзовидную форму. В экваториальной плоскости туманности соотношение между притяжением и центробеж- ной силой изменялось в пользу этой последней, так что в конечном счете масса вещества, скопившегося в экваториальной зоне туманности, отделилась от остального тела и образовала кольцо. От продолжавшей вращаться туманности последовательно отделялись все новые кольца, которые, конденсируясь в определенных точках, постепенно превращались в планеты и другие тела солнечной системы. В общей сложности от первоначальной туманности отделилось десять колец, распавшихся на девять планет и пояс астероидов - мелких небесных тел. Спутники отдельных планет сложились из вещества вторичных колец, оторвавшихся от раскаленной газообразной массы планет.

Вследствие продолжавшегося уплотнения материи температура новообразованных тел была исключительно высокой. В то время и наша Земля, по П. Лапласу, представляла собой раскаленный газообразный шар, светившийся подобно звезде. Постепенно, однако, этот шар остывал, его материя переходила в жидкое состояние, а затем, по мере дальнейшего охлаждения, на его поверхности стала образовываться твердая кора. Эта кора была окутана тяжелыми атмосферными парами, из которых при остывании конденсировалась вода.

Эти две теории взаимно дополняли друг друга, поэтому в литературе они часто упоминаются под общим названием как гипотеза Канта-Лалласа. Поскольку наука не располагала в то время более приемлемыми объяснениями, у этой теории было в XIX веке множество последователей.


Теория Джинса.

Предложенная в 1916 году Джеймсом Джинсом новая теория, согласно которой вблизи Солнца прошла звезда и ее притяжение вызвало выброс солнечного вещества, из которого в последующем образовались планеты, должна была объяснить парадокс распределения момента импульса. Однако в настоящее время специалисты не поддерживают эту теорию. В 1935 году Рассел предположил, что Солнце было двойной звездой. Вторая звезда была разорвана силами гравитации при тесном сближении с другой, третьей звездой. Девятью годами позже Хойл высказал теорию, что Солнце было двойной звездой, причем вторая звезда прошла весь путь эволюции и взорвалась как сверхновая, сбросив всю оболочку. Из остатков этой оболочки и образовалась планетная система. В сороковых годах ХХ века советский астроном Отто Шмидт предположил, что Солнце захватило при обращении вокруг Галактики облако пыли. Из вещества этого огромного холодного пылевого облака сформировались холодные плотные допланетные тела - планетезимали. Элементы многих из перечисленных выше теорий использует современная космогония.

Теория Шмидта.

В 1944 г. советский ученый О. Ю. Шмидт предложил свою теорию происхождения Солнечной системы. Согласно О. Ю. Шмидту наша планетная система образовалась из вещества, захваченного из газово-пылевой туманности, через которую некогда проходило Солнце, уже тогда имевшее почти "современный" вид. При этом никаких трудностей с вращательным моментом планет не возникает, так как первоначальный момент вещества облака может быть сколь угодно большим. Начиная с 1961 г. эту гипотезу развивал английский космогонист Литтлтон, который внес в нее существенные улучшения. Нетрудно видеть, что блок-схема "аккреционной" гипотезы Шмидта - Литтлтона совпадает с блок-схемой "гипотезы захвата" Джинса-Вулфсона. В обоих случаях "почти современное" Солнце сталкивается с более или менее "рыхлым" космическим объектом, захватывая части его вещества. Следует, впрочем, заметить, что для того, чтобы Солнце захватило достаточно много вещества, его скорость по отношению к туманности должна быть очень маленькой, порядка ста метров в секунду. Если учесть, что скорость внутренних движений элементов облака должна быть не меньше, то, по существу, речь идет о "застрявшем" в облаке Солнце, которое, скорее всего, должно иметь общее с облаком происхождение. Тем самым образование планет связывается с процессом звездообразования.

Теория Фесенкова.

Вероятно, возраст Луны и Земли близок возрасту Солнца, полагал в 50-60 гг академик В.Фесенков. И вещество, из которого они состоят, возникало из околосолнечной газово-пылевой туманности, а не из межзвездных скоплений. По Фесенкову, Луна и Земля - «дети молодого Солнца», которое вращаясь и постепенно сгущаясь, рождало вокруг себя вихревые сгущения -- будущие планеты и их спутники. В отношении Луны ученый оказался прав, ее происхождение, действительно, связано с взрывом молодого Солнца.

Происхождение Земли (космогонические гипотезы)

Космогонические гипотезы. Научный подход к вопросу о происхождении Земли и Солнечной системы стал возможен после укрепления в науке мысли о материальном единстве во Вселенной. Возникает наука о происхождении и развитии небесных тел - космогония.

Первые попытки дать научное обоснование вопросу о происхождении и развитии Солнечной системы были сделаны 200 лет назад.

Все гипотезы о происхождении Земли можно разбить на две основные группы: небулярные (лат. «небула» - туман, газ) и катастрофические. В основе первой группы лежит принцип образования планет из газа, из пылевых туманностей. В основе второй группы - различные катастрофические явления (столкновение небесных тел, близкое прохождение друг от друга звезд и т.д.).

Гипотеза Канта и Лапласа. Первой научной гипотезой о происхождении Солнечной системы была гипотеза И. Канта (1755). Независимо от него другой ученый - французский математик и астроном П. Лаплас - пришел к тем же выводам, но разработал гипотезу более глубоко (1797). Обе гипотезы сходны между собой по существу и часто рассматриваются как одна, а авторов ее считают основоположниками научной космогонии.

Гипотеза Канта-Лапласа относится к группе небулярных гипотез. Согласно их концепции, на месте Солнечной системы располагалась ранее огромная газо-пылевая туманность (пылевая туманность из твердых частиц, по мнению И. Канта; газовая - по предположению П. Лапласа). Туманность была раскаленной и вращалась. Под действием законов тяготения материя ее постепенно уплотнялась, сплющивалась, образуя в центре ядро. Так образовалось первичное Солнце. Дальнейшее охлаждение и уплотнение туманности привело к увеличению угловой скорости вращения, вследствие чего на экваторе произошло отделение наружной части туманности от основной массы в виде колец, вращающихся в экваториальной плоскости: их образовалось несколько. В качестве примера Лаплас приводил кольца Сатурна. Неравномерно охлаждаясь, кольца разрывались, и вследствие притяжения между частицами происходило образование планет, обращающихся вокруг Солнца. Остывающие планеты покрывались твердой корой, на поверхности которой стали развиваться геологические процессы.

И. Кант и П. Лаплас верно подметили основные и характерные черты строения Солнечной системы:

    подавляющая часть массы (99,86%) системы сосредоточена в Солнце;

    планеты обращаются почти по круговым орбитам и почти в одной и той же плоскости;

    все планеты и почти все их спутники вращаются в одну и ту же сторону, все планеты вращаются вокруг своей оси в ту же сторону.

Значительной заслугой И. Канта и П. Лапласа явилось создание гипотезы, в основу которой была положена идея развития материи. Оба ученых считали, что туманность обладала вращательным движением, вследствие чего произошло уплотнение частиц и образование планет и Солнца. Они полагали, что движение неотделимо от материи и так же вечно, как и сама материя.

Гипотеза Канта-Лапласа существовала в течение почти двух сотен лет. Впоследствии была доказана ее несостоятельность. Так, стало известно, что спутники некоторых планет, например Урана и Юпитера, вращаются в ином направлении, чем сами планеты. По данным современной физики, газ, отделившийся от центрального тела, должен рассеяться и не может сформироваться в газовые кольца, а позднее - в планеты. Другими существенными недостатками гипотезы Канта и Лапласа являются следующие.

    Известно, что момент количества движения во вращающемся теле всегда остается постоянным и распределяется равномерно по всему телу пропорционально массе, расстоянию и угловой скорости соответствующей части тела. Этот закон распространяется и на туманность, из которой сформировались Солнце и планеты. В Солнечной системе количество движения не соответствует закону распределения количества движения в массе, возникшей из одного тела. В планетах Солнечной системы сосредоточено 98% момента количества движения системы, а Солнце имеет только 2%, в то время как на долю Солнца приходится 99,86% всей массы Солнечной системы.

    Если сложить моменты вращения Солнца и других планет, то при расчетах окажется, что первичное Солнце вращалось с той же скоростью, с какой сейчас вращается Юпитер. В связи с этим Солнце должно было обладать тем же сжатием, что и Юпитер. А этого, как показывают расчеты, недостаточно, чтобы вызвать дробление вращающегося Солнца, которое, как считали Кант и Лаплас, распалось вследствие избытка вращения.

3. В настоящее время доказано, что звезда, обладающая избытком вращения, распадается на части, а не образует семейство планет. Примером могут служить спектрально-двойные и кратные системы.

Гипотеза Джинса. После гипотезы Канта-Лапласа в космогонии было создано еще несколько гипотез образования Солнечной системы.

Появляются так называемые катастрофические, в основе которых лежит элемент случайности, элемент счастливого стечения обстоятельств:

Бюффон - Земля и планеты образовались за счет столкновения Солнца с кометой; Чемберлен и Мультон - образование планет связано с приливным воздействием проходящей мимо Солнца другой звезды.

В качестве примера гипотезы катастрофического направления рассмотрим концепцию английского астронома Джинса (1919). В основу его гипотезы положена возможность прохождения вблизи Солнца другой звезды. Под действием ее притяжения из Солнца вырвалась струя газа, которая при дальнейшей эволюции превратилась в планеты Солнечной системы. Газовая струя по своей форме напоминала сигару. В центральной части этого вращающегося вокруг Солнца тела образовались крупные планеты - Юпитер и Сатурн, а в концах «сигары» - планеты земной группы: Меркурий, Венера, Земля, Марс, Плутон.

Джине полагал, что прохождение звезды мимо Солнца, обусловившее образование планет Солнечной системы, позволяет объяснить несоответствие в распределении массы и момента количества движения в Солнечной системе. Звезда, вырвавшая газовую струю из Солнца, придала вращающейся «сигаре» избыток момента количества движения. Таким образом устранялся один из основных недостатков гипотезы Канта-Лапласа.

В 1943 г. русский астроном Н. И. Парийский вычислил, что при большой скорости звезды, проходившей мимо Солнца, газовый протуберанец должен был уйти вместе со звездой. При малой скорости звезды газовая струя должна была упасть на Солнце. Только в случае строго определенной скорости звезды газовый протуберанец мог бы стать спутником Солнца. В этом случае его орбита должна быть в 7 раз меньше орбиты самой близкой к Солнцу планеты - Меркурия.

Таким образом, гипотеза Джинса, так же как и гипотеза Канта-Лапласа, не смогла дать верного объяснения непропорциональному распределению момента количества движения в Солнечной системе. Самым большим недостатком этой гипотезы является факт случайности, исключительности образования семьи планет, что противоречит материалистическому мировоззрению и имеющимся фактам, говорящим о наличии планет в других звездных мирах. Кроме того, расчеты показали, что сближение звезд в мировом пространстве практически исключено, и даже если бы это произошло, проходящая звезда не могла бы придать планетам движение по круговым орбитам.

Современные гипотезы. Больших успехов в развитии космогонии достигли ученые нашей страны. Наиболее популярными являются гипотезы о происхождении Солнечной системы, созданные О. Ю. Шмидтом и В. Г. Фесенковым. Оба ученых при разработке своих гипотез исходили из представлений о единстве материи во Вселенной, о непрерывном движении и эволюции материи, являющихся ее основными свойствами, о разнообразии мира, обусловленного различными формами существования материи.

Гипотеза О. Ю. Шмидта. Согласно концепции О.Ю. Шмидта, Солнечная система образовалась из скопления межзвездной материи, захваченной Солнцем в процессе движения в мировом пространстве. Солнце движется вокруг центра Галактики, совершая полный оборот за 180 млн лет. Среди звезд Галактики имеются большие скопления газово-пылевых туманностей. Исходя из этого, О. Ю. Шмидт полагал, что Солнце при движении вступило в одно из таких облаков и захватило его с собой. Силой своего притяжения оно заставило облако вращаться вокруг себя. Шмидт полагал, что первоначальное облако межзвездной материи обладало некоторым вращением, в противном случае его частицы выпали бы на Солнце.

В процессе обращения облака вокруг Солнца мелкие частицы сосредоточивались в экваториальной части. Облако превращалось в плоский уплотненный вращающийся диск, в котором вследствие увеличения взаимного притяжения частиц происходило сгущение. Образовавшиеся сгущения-тела росли за счет присоединяющихся к ним мелких частиц, как снежный ком. Таким путем образовались планеты и обращающиеся вокруг них спутники. Планеты стали вращаться по круговым орбитам вследствие усреднения орбит малых частиц.

Земля, по мнению О. Ю. Шмидта, также образовалась из роя холодных твердых частиц. Постепенное разогревание недр Земли произошло за счет энергии радиоактивного распада, что привело к выделению воды и, газа, входивших в небольших количествах в состав твердых частиц. В результате возникли океаны и атмосфера, обусловившие появление жизни на Земле.

Гипотеза О. Ю. Шмидта правильно объясняет ряд закономерностей в строении Солнечной системы. Ученый считает, что имеющиеся несоответствия в распределении моментов количества движения Солнца и планет объясняются разными первоначальными моментами количества движения Солнца и газово-пылевой туманности. Шмидт рассчитал и математически обосновал расстояния планет от Солнца и между собой и выяснил причины образования крупных и мелких планет в разных частях Солнечной системы и разницу в их составе. Посредством расчетов обоснованы причины вращательного движения планет в одну сторону. Недостатком гипотезы является рассмотрение вопроса о происхождении планет изолированно от образования Солнца- определяющего члена системы. Концепция не лишена элемента случайности: захвата Солнцем межзвездной материи.

Гипотеза В. Г. Фесенкова. Работы астронома В. А. Амбар-цумяна, доказавшего непрерывность образования звезд в результате конденсации вещества из разреженных газово-пылевых туманностей, позволили академику В. Г. Фесенкову выдвинуть новую гипотезу. Фесенков полагает, что процесс образования планет широко распространен во Вселенной, где имеется много планетных систем. По его мнению, формирование планет связано с образованием новых звезд, возникающих в результате сгущения первоначально разреженного вещества. Одновременное образование Солнца и планет доказывается одинаковым возрастом Земли и Солнца.

В результате уплотнения газово-пылевого облака сформировалось звездообразное сгущение. Под влиянием быстрого вращения туманности значительная часть газово-пылевой материи все больше удалялась от центра туманности по плоскости экватора, образуя нечто вроде диска. Постепенно уплотнение газово-пылевой туманности обусловило формирование планетных сгущений, образовавших впоследствии современные планеты Солнечной системы. В отличие от Шмидта Фесенков полагает, что газово-пылевая туманность находилась в раскаленном состоянии. Большой его заслугой является обоснование закона планетных расстояний в зависимости от плотности среды. ВТ. Фесенков математически обосновал причины устойчивости момента количества движения в Солнечной системе потерей вещества Солнца при выборе материи, вследствие чего произошло замедление его вращения. В.Г. Фесенков приводит также доводы в пользу обратного движения некоторых спутников Юпитера и Сатурна, объясняя это захватом планетами астероидов.

На данном этапе изучения Вселенной гипотеза В. Г. Фесенкова правильно освещает вопрос происхождения, развития и особенности строения Солнечной системы. Из концепции гипотезы вытекает, что планетообразование является широко распространенным процессом во Вселенной. Формирование планет происходило из вещества, тесно связанного с первичным Солнцем, без вмешательства внешних сил.

Строение и состав Земли

Масса Земли оценивается в 5,98-10 27 г, а ее объем - в 1,083-10 27 см 3 . Следовательно, средняя плотность планеты составляет около 5,5 г/см 3 . Но плотность доступных нам горных пород равна 2,7-3,0 г/см 3 . Из этого следует, что плотность вещества Земли неоднородна.

Земля окружена мощной газовой оболочкой - атмосферой. Она является своеобразным регулятором обменных процессов между Землей и Космосом. В составе газовой оболочки выделяется несколько сфер, отличающихся составом и физическими свойствами. Основная масса газового вещества заключена в тропосфере, верхняя граница которой, расположенная на высоте около 17 км на экваторе, снижается к полюсам до 8-10 км. Выше, на протяжении стратосферы и мезосферы, нарастает разреженность газов, сложно меняются термические условия. На высоте от 80 до 800 км располагается ионосфера - область сильно разреженного газа, среди частиц которого преобладают электрически заряженные. Самую наружную часть газовой оболочки образует экзосфера, простирающаяся до высоты 1800 км. Из этой сферы происходит диссипация наиболее легких атомов - водорода и гелия.

Главнейшими методами изучения внутренних частей нашей планеты являются геофизические, в первую очередь наблюдения за скоростью распространения сейсмических волн, образующихся от взрывов или землетрясений. Подобно тому, как от камня, брошенного в воду, в разные стороны расходятся по поверхности воды

волны, так в твердом веществе от очага взрыва распространяются упругие волны. Среди них выделяют волны продольных и поперечных колебаний. Продольные колебания представляют собой чередования сжатия и растяжения вещества в направлении распространения волны. Поперечные колебания можно представить как чередующиеся сдвиги в направлении, перпендикулярном распространению волны.

Волны продольных колебаний, или, как принято говорить, продольные волны, распространяются в твердом веществе с большей скоростью, чем поперечные. Продольные волны распространяются как в твердом, так и в жидком веществе, поперечные - только в твердом. Следовательно, если при прохождении сейсмических волн через какое-либо тело будет обнаружено, что оно не пропускает поперечные волны, то можно считать, что это вещество находится в жидком состоянии. Если через тело проходят оба типа сейсмических волн, то это - свидетельство твердого состояния вещества.

Скорость волн увеличивается с возрастанием плотности вещества. При резком изменении плотности вещества скорость волн будет скачкообразно меняться. В результате изучения распространения сейсмических волн через Землю обнаружено, что имеется несколько определенных границ скачкообразного изменения скоростей волн. Поэтому предполагается, что Земля состоит из нескольких концентрических оболочек (геосфер).

На основании установленных трех главных границ раздела выделяют три главные геосферы: земную кору, мантию и ядро (рис. 2.1).

Первая граница раздела характеризуется скачкообразным увеличением скоростей продольных сейсмических волн от 6,7 до 8,1 км/с. Эта граница получила название раздела Мохоровичича (в честь сербского ученого А.Мохоровичича, который ее открыл), или просто граница М. Она отделяет земную кору от мантии. Плотность вещества земной коры, как указано выше, не превышает 2,7-3,0 г/см 3 . Граница М расположена под континентами на глубине от 30 до 80 км, а под дном океанов - от 4 до 10 км.

Учитывая, что радиус Земного шара равен 6371 км, земная кора представляет собой тонкую пленку на поверхности планеты, составляющую менее 1% ее общей массы и примерно 1,5% ее объема.

Мантия - самая мощная из геосфер Земли. Она распространяется до глубины 2900 км и занимает 82,26% объема планеты. В мантии сосредоточено 67,8% массы Земли. С глубиной плотность вещества мантии в целом возрастает с 3,32 до 5,69 г/см 3 , хотя это происходит неравномерно.

Рис. 2.1. Схема внутреннего строения Земли

На контакте с земной корой вещество мантии находится в твердом состоянии. Поэтому земную кору вместе с самой верхней частью мантии называют литосферой.

Агрегатное состояние вещества мантии ниже литосферы недостаточно изучено и по этому поводу имеются различные мнения. Предполагается, что температура мантии на глубине 100 км составляет 1100- 1500°С, в глубоких частях - значительно выше. Давление на глубине 100 км оценивается в 30 тыс.атм., на глубине 1000 км - 1350 тыс. атм. Несмотря на высокую температуру, судя по распространению сейсмических волн, вещество мантии преимущественно твердое. Колоссальное давление и высокая температура делают невозможным обычное кристаллическое состояние. По-видимому, вещество мантии находится в особом высокоплотном состоянии, которое на поверхности Земли невозможно. Уменьшение давления или некоторое повышение температуры должны вызвать быстрый переход вещества в состояние расплава.

Мантию подразделяют на верхнюю (слой В, простирающийся до глубины 400 км), промежуточную (слой С - от 400 до 1000 км) и нижнюю (слой Д - от 1000 до 2900 км). Слой С именуют также слоем Голицина (в честь русского ученого Б.Б.Голицина, установившего этот слой), а слой В - слоем Гутенберга (в честь выделившего его немецкого ученого Б.Гутенберга).

В верхней мантии (в слое В) имеется зона, в которой скорость поперечных сейсмических волн значительно уменьшается. По-видимому, это связано с тем, что вещество в пределах зоны частично находится в жидком (расплавленном) состоянии. Зона пониженной скорости распространения поперечных сейсмических волн предполагает, что жидкая фаза составляет до 10%, что отражается на более пластичном состоянии вещества по сравнению с выше и ниже расположенными слоями мантии. Относительно пластичный слой пониженных скоростей сейсмических волн получил название астеносферы (от греч. asthenes - слабый). Мощность ослабленной зоны достигает 200-300 км. Располагается она на глубине примерно 100-200 км, но глубина меняется: в центральных частях океанов астеносфера располагается выше, под устойчивыми участками материков опускается глубже.

Астеносфера имеет весьма важное значение для развития глобальных эндогенных геологических процессов. Малейшее нарушение термодинамического равновесия способствует образованию огромных масс расплавленного вещества (астенолитов), которые поднимаются вверх, способствуя перемещению отдельных блоков литосферы по поверхности Земли. В астеносфере возникают магматические очаги. Исходя из тесной связи литосферы с астеносферой эти два слоя объединяют под названием тектоносфера.

В последнее время внимание ученых в мантии привлекает зона, расположенная на глубине 670 км. Полученные данные позволяют предполагать, что эта зона намечает нижнюю границу конвективного тепломассообмена, который связывает верхнюю мантию (слой В) и верхнюю часть промежуточного слоя с литосферой.

В пределах мантии скорость сейсмических волн в целом возрастает в радиальном направлении от 8,1 км/с на границе земной коры с мантией до 13,6 км/с в нижней мантии. Но на глубине около 2900 км скорость продольных сейсмических волн резко уменьшается до 8,1 км/с, а поперечные волны глубже вообще не распространяются. Этим намечается граница между мантией и ядром Земли.

Ученым удалось установить, что на границе мантии и ядра в интервале глубин 2700-2900 км, в переходном слое Д 1 (в отличие от нижней мантии, имеющей индекс Д) происходит зарождение гигантских тепловых струй - плюмов, периодически пронизывающих всю мантию и проявляющихся на поверхности Земли в виде обширных вулканических полей.

Ядро Земли - центральная часть планеты. Оно занимает только около 16% ее объема, но содержит более трети всей массы Земли. Судя по распространению сейсмических волн, периферия ядра находится в жидком состоянии. В то же время наблюдения за происхождением приливных волн позволили установить, что упругость Земли в целом очень велика, больше упругости стали. По-видимому, вещество ядра находится в каком-то совершенно особом состоянии. Здесь господствуют условия чрезвычайно высокого давления в несколько миллионов атмосфер. В этих условиях происходит полное или частичное разрушение электронных оболочек атомов, вещество «металлизируется», т.е. приобретает свойства, характерные для металлов, в том числе высокую электропроводность. Возможно, что земной магнетизм является результатом электрических токов, возникающих в ядре в связи с вращением Земли вокруг своей оси.

Плотность ядра - 5520 кг/м 3 , т.е. это вещество в два раза тяжелее каменной оболочки Земли. Вещество ядра неоднородно. На глубине около 5100 км скорость распространения сейсмических волн вновь возрастает с 8100 м/с до 11000 м/с. Поэтому предполагают, что центральная часть ядра твердая.

Вещественный состав разных оболочек Земли представляет весьма сложную проблему. Для непосредственного изучения состава доступна лишь земная кора. Имеющиеся данные свидетельствуют, что земная кора состоит преимущественно из силикатов, а 99,5% ее массы составляют восемь химических элементов: кислород, кремний, алюминий, железо, магний, кальций, натрий и калий. Все остальные химические элементы в сумме образуют около 1,5%.

О составе более глубоких сфер Земного шара можно судить лишь ориентировочно, используя геофизические данные и результаты изучения состава метеоритов. Поэтому модели вещественного состава глубинных сфер Земли, разработанные разными учеными, различаются. Можно с большой уверенностью предполагать, что верхняя мантия также состоит из силикатов, но содержащих меньше кремния и больше железа и магния по сравнению с земной корой, а нижняя мантия - из оксидов кремния и магния, кристаллохи-мическая структура которых значительно более плотная, чем у этих соединений, находящихся В Земной коре.

. ... геологии КУРС ЛЕКЦИЙ ГЕОЛОГИИ Лекция 1. Геология и цикл геологических наук . Краткий обзор истории Геология и цикл геологических наук . Геология ...
  • Лекция 1 Геология и цикл геологических наук (1)

    Курс лекций

    ... ГЕОЛОГИИ Лекция 1. Геология и цикл геологических наук . ... геологии КУРС ЛЕКЦИЙ ВВЕДЕНИЕ В СПЕЦИАЛЬНОСТЬ Минск 2005 ОБЩИЕ СВЕДЕНИЯ О ГЕОЛОГИИ Лекция 1. Геология и цикл геологических наук . Краткий обзор истории Геология и цикл геологических наук . Геология ...

  • Б 2 математический и естественнонаучный цикл базовая часть б 2 1 математика и математические методы в биологии аннотация

    Документ

    ... лекций Кол-во часов Формы текущего контроля успеваемости 1 2 3 4 Геология

  • Теория, основы которой были заложены академиком О. Ю. Шмидтом, является наиболее разработанной. Поэтому мы ее и приводим.

    О. Ю. Шмидт исходил сначала из того, что метеоритное вещество как в форме более или менее крупных кусков, так и в форме пыли в изобилии встречается во Вселенной. Еще недавно это метеоритное вещество было известно нам только в пределах Солнечной системы, но теперь мы обнаруживаем его в огромных количествах и в межзвездном пространстве. Большей частью метеоритное вещество собрано в колоссальные космические облака - в диффузные светлые и темные туманности, содержащие также много газа.

    Впоследствии различные соображения привели советских ученых Л. Э. Гуревича и А. И. Лебединского к выводу, что допланетное вещество было газово-пылевого состава. О. Ю. Шмидт согласился с таким представлением о состоянии допланетного вещества, но подчеркивал, что «ведущая роль» принадлежала пыли.

    Совокупность газово$пылевых облаков вместе со звездами заполняет нашу звездную систему - Галактику, причем их вещество сильно концентрируется к плоскости ее симметрии - к плоскости экватора Галактики. Вместе со звездами газово-пылевые облака участвуют во вращении Галактики вокруг оси. Наряду с этим вращением вокруг центра Галактики и звезды, и газово-пылевые облака имеют свои собственные движения, которые приводят к тому, что и звезды и облака то сближаются друг с другом, то расходятся. Иногда та или другая звезда погружается на время в газово-пылевую туманность и пролагает в ней себе дорогу, как путник, попавший в густой туман. Как туман путнику, так и газово-пылевое облако - не препятствие для движения звезды; сбиваться же ей с пути не приходится, так как ее путь в туманности направляется все тем же законом тяготения.

    Многие пылинки упадут на звезду в течение ее скольжения сквозь туманность, а другие, изменив свои орбиты вследствие мощного притяжения звезды, могут быть ею захвачены в плен и сделаются ее спутниками. Однако, чтобы такой захват произошел, необходимо наличие особых благоприятных условий - уменьшение относительной скорости пылинок благодаря притяжению близкой звездой или, как показал Т. А. Агекян, благодаря столкновению пылинок друг с другом. В подобном «удачном» случае огромное множество этих «благоприобретенных» спутников звезды, эта ее бесчисленная верная свита, по гипотезе Шмидта, не покидает ее и после выхода из туманности. Звезда оказывается окруженной огромным облаком частиц газа и пыли, описывающих вокруг нее различные орбиты. Позднее О. Ю. Шмидт считал, что более вероятным, мог быть захват облака из той самой диффузной среды, из которой возникло само Солнце.

    Облако, образовавшееся вокруг звезд, постепенно приобретало линзообразную форму. Обращение частичек в нем вокруг звезды происходило преимущественно, хотя и не исключительно, в одном каком-либо направлении (под небольшими углами друг к другу), потому что пылевой слой, пронизанный звездой, не мог быть совершенно однородным.

    В подобной звезде, окруженной линзообразным газово-пылевым облаком, О. Ю. Шмидт видел наше Солнце, в пору, предшествовавшую образованию планет.

    Конечно, не одно наше Солнце могло испытать такую встречу с газово-пылевой туманностью. Множество звезд, быть может большинство, должны были пережить такое же приключение, а другим оно еще предстоит в будущем. Тем лучше, значит, кроме нашей Солнечной системы, в Галактике должно быть еще множество планетных систем. Этот неизбежный вывод из новой теории дает ей преимущество по сравнению со многими другими космогоническими гипотезами, в которых возникновение солнечных систем было редким явлением.

    В сонме пылинок, обращающихся около Солнца по пересекающимся и различно вытянутым и наклоненным орбитам, неизбежно происходили столкновения и это вело к тому, что движения их осреднялись, приближались к круговым и лежащим в близких друг к другу плоскостях. От этого вокруг Солнца возник из облака газово-пылевой диск, становившийся все тоньше, но зато плотнее. Этот плотный слой частиц в частях, близких к Солнцу, поглощал его тепло. Поэтому дальше от Солнца внутри диска было очень холодно, и газы там намерзали на пылинках. Это объясняет, почему далекие от Солнца планеты богаче газом, чем близкие к нему. Это представление, как и теорию эволюции облака, развили Л. Э. Гуревич и А. И. Лебединский, и О. Ю. Шмидт нашел, что их картина эволюции облака вероятнее чем та, которая ему самому рисовалась раньше. Разработанная математически картина эволюции облака, хотя и содержащая ряд дополнительных гипотез, может быть названа теорией, лежащей в рамках гипотезы Шмидта. Основной же гипотезой Шмидта является предположение, что планеты возникли из холодного облака частиц, причем основную роль в нем играло поведение твердых пылинок и предположение, что облако было захвачено Солнцем и притом, когда последнее уже вполне сформировалось.

    Дальнейшая картина эволюции газово-пылевого диска вкратце представляется так. В уплотнившемся облаке возникали пылевые сгущения, в которых столкновения пылинок вели к их слиянию в твердые тела с поперечниками, как у современных астероидов. Множество их сталкивалось и дробилось, но более крупные из них, «зародыши» планет, - выживали и «всасывали» в себя окружающие осколки и остатки пыли, сначала присоединяя их при соударениях, а потом во все большей мере за счет притяжения их. Плотные зародыши планет окружались при этом роями тел и их обломков, обращающихся вокруг них и давших при своем объединении рождение спутникам планет по тому же «рецепту», по которому эти планеты возникли сами.

    Из линзообразной формы туманности, окружающей Солнце, и из преобладания в ней движений, параллельных друг другу и направленных в одну и ту же сторону, вытекают сразу основные характерные особенности строения Солнечной системы: вращение всех планет около Солнца в одну и те же сторону, малые углы между плоскостями их орбит, а также почти круговая форма орбит.

    О. Ю, Шмидт в одной из своих первых работ рассчитал, с какой скоростью происходил бы процесс увеличения массы планеты за счет падения на нее метеоритов, если бы наблюдаемые сейчас в Солнечной системе метеориты были остатками того роя, который некогда окружал Солнце. Оказалось, что вначале рост планеты происходил бурно, а потом все медленнее и медленнее. Грубо говоря, на постройку Земли пошли все те «кирпичи» - тела астероидных размеров и их обломки, которые заполняли пространство между границами, лежащими посредине между орбитами Земли и Венеры и между орбитами Марса и Земли, ближе к последней.

    Невозможно, конечно, определить, «когда был заложен первый камень» - фундамент будущей планеты, но теория Шмидта позволила подсчитать, за сколько времени масса Земли увеличилась вдвое и достигла своего современного значения. Это время «полуобразования», ввиду упомянутой быстроты роста планет, близко к тому, что можно назвать возрастом Земли. Во всяком случае, этот промежуток времени немногим меньше возраста Земли.

    Полагая, что сейчас на Землю ежегодно падает более 1000 тонн метеоритного вещества, О. Ю. Шмидт нашел для времени полуобразования Земли около 7 млрд. лет. Этот результат близок (в астрономических масштабах) к возрасту земной коры - 3 млрд. лет, определенному по радиоактивности горных пород. Ясно, что возраст земной коры должен быть меньше возраста Земли в целом.

    Поскольку, однако, современные метеориты в Солнечной системе, возможно, являются осколками планеты, находившейся между Марсом и Юпитером, а не остатками метеоритной туманности, этот подсчет теоретического возраста Земли носит лишь ориентировочный характер.

    О. Ю. Шмидт предполагал, что от ударов метеоритов в процессе быстрого роста Земли, а главное вследствие выделения тепла при радиоактивных процессах внутри слипающихся метеоритов их вещество разогревалось настолько, что становилось пластичным. Для этого было бы уже вполне достаточно температуры порядка 1000°. При размягчении метеоритного вещества более легкие каменные массы всплывали на поверхность, а тяжелые железистые массы постепенно опускались вниз. Так и создалось постепенно разделение массы Земли на плотное ядро и более легкую оболочку, причем до сих пор должна была бы сохраниться, и действительно еще сохранилась, промежуточная область, где тягучие железные и каменные массы не разделились вполне.

    В настоящее время существует взгляд, что ядро Земли не железное, а силикатное, как и земная кора, но находящееся в сильно уплотненном металлоподобном состоянии под действием высокого давления вышележащих слоев. В слое, где давление составляет 1 400 000 атмосфер, эти свойства силикатных недр Земли возникают скачком. Если принять эту точку зрения, то надо думать, что подъем легких и опускание тяжелых веществ в толще Земли идет медленно и далеко еще не закончился.

    Разогревание внутренних частей Земли еще продолжается и возникло в ее толще вследствие накопления тепла, выделяемого радиоактивным распадом внутри ее вещества.

    Остатки метеоритного вещества, не вошедшего в состав планет, продолжали обращаться около Солнца и, проходя вблизи сформировавшихся планет, захватывались ими з плен. В образовавшемся вокруг планет сплюснутом метеоритном облаке шел процесс столкновения метеоритов, подобный тому, что создал планеты, и так вокруг них создались спутники. Естественно, что в общем более массивные планеты, производя больше захватов, могли обзавестись для компании большим числом спутников.

    Поскольку большинство метеоритов, пошедших как кирпичи на постройку спутников, двигалось все в том же прямом направлении около Солнца и преимущественно вблизи плоскости эклиптики, то и орбиты спутников расположились вблизи этой плоскости. Направления их обращения оказались в согласии с теми движениями, которыми объединены все члены Солнечной системы. Только в редких случаях, когда в распределении скоростей или плотностей метеорного роя появлялась большая асимметрия, возникали планеты и спутники с обратным вращением (Уран с его спутниками, спутник Нептуна и далекие спутники Юпитера и Сатурна).

    Вращение планет вокруг своей оси, которое ни одна из прежних теорий не могла удовлетворительно объяснить, теория О. Ю. Шмидта объясняет так. Под влиянием падения метеоритов на планету она должна прийти во вращение, и притом именно в том же направлении, в каком она вращается вокруг Солнца. Если случайно в той области, где образовалась планета, метеориты с орбитами, мало вытянутыми и мало наклоненными к средней плоскости Солнечной системы, не были в достаточной мере преобладающими, могло возникнуть вращение планеты в обратном направлении, что и объясняет известный случай такого рода - вращение Урана.

    В успешном объяснении направления вращения планет теорией О. Ю. Шмидта состоит ее большая заслуга.

    Остановимся немного на вопросе, который, может быть, и не будет так интересен для читателя, как предыдущие, но который имеет огромное значение. Речь идет все о том же знаменательном моменте количества движения, который теория Джинса не могла объяснить.

    Мы помним, что в Солнечной системе львиная доля момента количества движения (т. е. суммы произведений масс частиц на их скорости и на расстояния от центра вращения) приходится на планеты. На Солнце с его медленным вращением вокруг оси приходится очень малая доля общего момента.

    О. Ю. Шмидт показал путем вычислений, что Солнце, если оно вначале не вращалось или вращалось еле-еле, должно было прийти во вращение под действием ударов падающих на него метеоритов.

    О. Ю. Шмидту удалось получить из своей теории формулу, которая утверждает, что произведение должно быть постоянным или почти постоянным для всех планет. В этом произведении m означает массу планеты, R - ее расстояние от Солнца, r - ее радиус и Р - период ее вращения вокруг оси. Так это оказывается и на самом деле. Наибольшее уклонение от этого закона обнаруживают Юпитер и Сатурн. Но по ряду соображений мы уже и раньше были склонны думать, что видимый радиус этих планет, подставленный в эту формулу, не есть действительный радиус их твердой поверхности - это радиус видимой границы их обширной и плотной атмосферы. Чтобы получить величину ω для Юпитера, близкой к тому, что получается для планет типа Земли и Марса (не внушающих подобных подозрений), надо допустить, что у Юпитера средняя плотность та же, что у Земли, и что тогда сам он лишь в 6,8 раз больше Земли (по диаметру). Почти половину его видимого радиуса составляет в этом случае толщина его обширной непрозрачной атмосферы. Но почти в точности к такому же соотношению размеров планеты и ее атмосферы приходил раньше и Джефрейс, хотя его соображения были совершенно иные.

    m 2/3 √R P/r 2 =ω

    Что касается Меркурия и Венеры, то их первоначальное вращение к настоящему времени заторможено действием приливов, ибо приливное действие Солнца на эти ближайшие к нему планеты весьма велико.

    Подобным же образом, но в меньшей степени, Луна и Солнце своим приливным воздействием затормозили суточное вращение Земли. Раньше Земля вращалась быстрее.

    Слипание вместе метеоритов, двигавшихся по продолговатым эллипсам с различно расположенными большими полуосями, приведет после слияния их к движению по орбите, более близкой к окружности. Чем больше метеоритов слипается, т. е. чем больше разнообразие направлений больших полуосей их орбит, тем ближе будет к окружности орбита планеты. Действительно, орбиты крупных планет, Юпитера и Сатурна, менее продолговаты, чем орбиты Меркурия и Марса.

    Но как распределяются планеты по своим расстояниям от Солнца? Ответ на этот вопрос, найденный О. Ю. Шмидтом, получился неожиданно простым. Оказывается, момент количества движения, рассчитанный на единицу массы планеты, будет возрастать в арифметической прогрессии при переходе от одной планеты к следующей. Для тел, движущихся по круговым орбитам, момент количества движения (на единицу массы) пропорционален корню квадратному из радиуса орбиты. Следовательно, корни квадратные из расстояний планет от Солнца (√R) должны возрастать в арифметической прогрессии.

    Этот закон прекрасно согласуется с действительным распределением расстояний планет от Солнца, если только мы будем рассматривать отдельно группу планет, далеких от Солнца (от Юпитера до Плутона), и группу планет, близких к Солнцу (от Меркурия до Марса). Мы уже говорили, что часть метеоритов, находившихся в районе планет второй группы, упала на Солнце, и потому, рассматривая их расстояния от Солнца, нельзя объединять их с планетами, далекими от Солнца. Для планет, близких к Солнцу, √R возрастает в среднем на 0,20 при переходе от одной планеты к следующей. Гшэтому, взяв за исходное значение √R его истинное значение для Меркурия, можно построить следующую табличку:

    Первая строка показывает метод вычисления √R, вторая строка дает вычисленные значения расстояний планет, а последняя строка - истинные расстояния. Согласие получается очень хорошим.

    Для планет, далеких от Солнца, среднее возрастание Y~R получается равным 1,00 и потому, беря за исходное значение √R его истинное значение для Юпитера, получаем:

    Согласие вычисленных и истинных расстояний получается прекрасным. Таким образом, О. Ю. Шмидту как будто удалось объяснить закон планетных расстояний, не получивший никакого теоретического обоснования в прежних космогонических теориях. Некоторые другие космогонические теории последнего времени также объясняют это явление, но иными путями.

    Здесь мы дали представление лишь об одной из множества космогонических гипотез. Единого взгляда на процесс возникновения планет и спутников пока нет.

    В данной работе производится анализ темы солнечная система, как она устроена. Какие версии были раньше и существуют в настоящее время. В исследовании подробно рассматриваются разные факты о солнечной системе и о всем что окружает ее.

    Цели и задачи работы

    1.Представить читателю наиболее подробную информацию о солнечной системе.

    2.Разьяснить и детально рассмотреть гипотезы ученых о солнечной системе.

    3.Определить важность и значимость каждой гипотезы и формирования солнечной системы.

    Объем работы составляет 20 страниц формата А4.

    Информация для работы взята из 8 различных источников.

    Работу выполнил и подготовил студент первого курса ЧСХТ группы 112

    Батанов Всеволод Олегович.

    1.Введение……………………………………………………………………………………………………………….3стр

    2.Первые теории образования Солнечной системы и планет………………………….....4стр.1) Гипотеза Иммануила Канта……………………………………………………………………………..4стр.2) Гипотеза Пьера Си­мона Лапласа…………………………………………………...................4стр.3) Гипотеза Джеймса Джинса………………………………………………………………………………4стр.

    4) Гипотеза Ханнеса Альвена……………………………………………………………………………….6стр.5) Гипотеза Фреда Хойла……………………………………………………………………………………..6стр.6) Гипотеза В. А. Амбарцумяна……………………………………………………….....................7стр.7) Планетная космогония Шмидта………………………………………………….....................7стр.

    8) Солнечная система…………………………………………………………………........................10стр.

    3.Современные представления об образовании Солнечной системы………………..11стр.

    4.Заключение……………………………………………………………………………………………………………17стр.

    5.Список литературы………………………………………………………………………………………………..19стр.

    Введение С начала времен людей интересовало происхождение Земли, Солнца, звезд и планет. Как они возникли, как развиваются и чем всё закончится? На протяжении человеческой истории существовало множество самых различных гипотез происхождения Солнца и планет - от мифологической и божественной до космологических. Ученые выдвигали множество гипотез: хорошо обоснованных и не очень, правдоподобных и невероятных, но большинство из них так и не смогли приблизиться к тому, чтобы стать настоящей теорией. По сей день единой, завершённой теории образования звёзд, планет или галактик не существует. Об истории возникновения Солнечной системы, происхождении звезд, Солнца и Земли с давних времен создавалось много учений, и во многих из них содержалась доля истины, объяснявшая какую-либо особенность космогенеза. Развитие астрономии и других естественных наук послужило основой для создания научных космогонических гипотез. Слово «космогония» происходит от греческого «космос», что означает Мир, Вселенная. Космогония - это наука, которая изу­чает происхождение и развитие небесных тел, в частности нашей Солнечной системы. В вопросе происхождения Солнечной системы еще много не­ясного. Поэтому для объяснения недостаточно изученных явле­ний обычно выдвигают то или иное научное предположение, или гипотезу. Следовательно, космогоническая гипотеза - это науч­ное предположение о происхождении и развитии небесных тел. Открытие Ньютоном в XVII веке закона всемирного тяготения лежит в основе главных идей первых эволюционных космогонических гипотез Канта, Гершеля, Лапласа. Их смысл - в постепенном изменении гравитирующей материи, непрерывной эволюции космических образований путем их уплотнения и ведущей роли в этом процессе сил гравитации. Начиная уже с Vв. до новой эры проблемой образования Солнечной системы интересовался Гераклид Понтийский. Из наиболее ранних теорий происхождения Солнечной системы известно учение Рене Декарта 1644 года. Но только со второй половины XVIII века порождаются эволюционные космогонические гипотезы такими учеными, как Бюффон, Кант, Лаплас, Рош, Мейер, Лоньер, Бикертон. И начиная с ХХ века, начинают образовываться современные модели образования Солнечной системы и планет.

    Первые теории образования Солнечной системы и планет. Одна из первых попыток научного объяснения происхожде­ния небесных тел принадлежит известному немецкому философу Иммануилу Канту (1724-1804). В 1755 году была напечатана его книга «Всеобщая естественная история и теория неба». В ней Кант образно сказал: «Дайте мне ма­терию, и я покажу вам, как из нее должен образоваться мир». По­добно древним грекам, он считал, что первоначальным состоянием мира был хаос, когда пространство Вселенной было заполнено хо­лодными пылевыми частицами. Но вследствие притяжения, дей­ствовавшего между ними, хаос распался на отдельные сгущения. В течение долгого времени сгущения росли и уплотнялись. Из более крупного (центрального) сгущения образовалось Солнце, а из других, малых сгущений, - планеты и их спутники. Знаменитый французский астроном и математик Пьер Си­мон Лаплас (1749-1827) ничего не знал о гипотезе своего со­временника Канта: космогонические идеи немецкого философа еще не успели проникнуть во Францию. Создавая собственную гипотезу, Лаплас учел основные особенности строения Солнеч­ной системы и, опираясь на известные ему факты, описал про­цесс образования Солнечной системы из вращающейся раска­ленной газовой туманности... Главная же несостоятельность гипотезы Лапласа вскрылась лишь после того, как был сделан подсчет моментов количества движения в Солнечной системе. Как известно, момент количества движения планеты равен произведению ее массы на скорость движения по орбите и на рас­стояние планеты от Солнца. Когда ученые подсчитали все орбитальные и вращательные моменты в Солнечной системе, то оказалось, что на долю планет и их спутников приходится более 98% момента количества движения, а на до­лю массивного Солнца - только около 2%. Это прямой результат слишком медленного вращения нашего дневного светила, что полностью исключает воз­можность отделения колец от протосолнца. В самом деле, зная скорость вращения Солнца вокруг своей оси (линейная скорость на солнечном эква­торе около 2 км/с), можно, исходя из закона сохранения момента количества движения, подсчитать угловую скорость, которой должно было обладать первичное Солнце. Она действительно оказалась совершенно недостаточной. Для гипотезы Лапласа эта трудность оказалась непреодолимой. На смену ей стали выдвигаться другие гипотезы. В частности, гипотеза Джинса, предложенная в 1916 году Джеймсом Джинсом, согласно которой вблизи Солнца прошла звезда и ее притяжение вызвало выброс солнечного вещества, из которого в последующем образовались планеты, должна была объяснить парадокс распределения момента импульса. Эта гипотеза во всех отношениях представляет собой полную противоположность гипотезе Канта - Лапласа. Если последняя рисует образование планетных систем (в том числе и нашей Солнечной) как единый закономерный процесс эволюции от простого к сложному, то в гипотезе Джинса образование таких систем есть дело случая и представляет редчайшее, исключительное явление. Согласно гипотезе Джинса, исходная материя, из которой в дальнейшем образовались планеты, была выброшена из Солнца (которое к тому времени было уже достаточно "старым" и похожим на нынешнее) при случайном прохождении вблизи него некоторой звезды. Это прохождение было настолько близким, что практически его можно рассматривать как столкновение. При таком очень близком прохождении благодаря приливным силам, действовавшим со стороны налетевшей на Солнце звезды, из поверхностных слоев Солнца была выброшена струя газа. Эта струя останется в сфере притяжения Солнца и после того, как звезда уйдет от Солнца. В дальнейшем струя сконденсируется и даст начало планетам. Эта гипотеза, владевшая умами астрономов в течение трех десятилетий, предполагает, что образование планетных систем, подобных нашей Солнечной, есть процесс исключительно маловероятный. В самом деле, как подсчитано, столкновения звезд, а также их близкие взаимные прохождения в нашей Галактике могут происходить чрезвычайно редко. Отсюда следует, что, если бы гипотеза Джинса была правильной, то планетных систем, образовавшихся в Галактике за 10 млрд. лет ее эволюции, можно было пересчитать буквально по пальцам. А так как это, по-видимому, не соответствует действительности и число планетных систем в Галактике достаточно велико, гипотеза Джинса оказывается несостоятельной. Несостоятельность этой гипотезы следует также и из других соображений. Прежде всего, она страдает тем же фатальным недостатком, что и гипотеза Канта - Лапласа: гипотеза Джинса не в состоянии объяснить, почему подавляющая часть момента количества движения Солнечной системы сосредоточена в орбитальном движении планет. Математические расчеты, выполненные в свое время Н. Н. Парийским, показали, что при всех случаях в рамках гипотезы Джинса образуются планеты с очень маленькими орбитами. Еще раньше на эту классическую космогоническую трудность применительно к гипотезе Джинса указал американец Рессел. Наконец, ниоткуда не следует, что выброшенная из Солнца струя горячего газа может сконденсироваться в планеты. Наоборот, расчеты ряда известных астрофизиков, в частности, Лаймана Спитцера, показали, что вещество струи рассеется в окружающем пространстве и конденсации не будет. Таким образом, космогоническая гипотеза Джинса оказалась полностью несостоятельной. Это стало очевидным уже в конце тридцатых годов ХХ столетия. Прогрессивное значение этих гипотез огромно, ибо впервые в истории науки на основе известных в то время законов приро­ды была сделана попытка объяснить происхождение Солнечной системы. И начиная с ХХ века, начинают образовываться современные модели образования Солнечной системы и планет. Из таких гипотез происхождения солнечной системы наиболее известна электромагнитная гипотеза шведского астрофизика X. Альвена, усовершенствованная Ф. Хойлом.. Альвен исходил из предположения, что некогда Солнце обладало очень сильным электромагнитным полем. Туманность, окружавшая светило, состояла из нейтральных атомов. Под действием излучений и столкновений атомы ионизировались. Ионы попадали в ловушки из магнитных силовых линий и увлекались вслед за вращающимся светилом. Постепенно Солнце теряло свой вращательный момент, передавая его газовому облаку. Слабость предложенной гипотезы заключалась в том, что атомы наиболее легких элементов должны были ионизироваться ближе к Солнцу, атомы тяжелых элементов - дальше. Значит, ближайшие к Солнцу планеты должны были бы состоять из наилегчайших элементов - водорода и гелия, а более отдаленные - из железа и никеля. Наблюдения говорят об обратном. Чтобы преодолеть эту трудность, английский астроном Ф. Хойл предложил новый вариант гипотезы. Солнце зародилось в недрах туманности. Оно быстро вращалось, и туманность становилась все более плоской, превращаясь в диск. Постепенно диск начинал тоже разгоняться, а Солнце тормозилось. Момент количества Движения переходил к диску. Затем в нем образовались планеты. Если предположить, что первоначальная туманность уже обладала) магнитным полем, то вполне могло произойти перераспределение углового момента. Трудностями и противоречиями гипотезы Хойла являются следующие: во-первых, нелегко представить, как могли "отсортироваться" избыточный водород и гелий в первоначальном газовом диске, из которого образовались планеты, поскольку химический состав планет явно отличен от химического состава Солнца; во-вторых, не совсем ясно, каким образом легкие газы покинули Солнечную систему (процесс испарения, предлагаемый Хойлом, сталкивается со значительными трудностями); в-третьих, главной трудностью гипотезы Хойла является требование слишком сильного магнитного поля у "протосолнца", резко противоречащее современным астрофизическим представлениям. Вторая гипотеза, выдвинутая акад. В. А. Амбарцумяном, состоит в том, что звезды образуются из некоторого сверхплотного вещества. Основой этого кажущегося неожиданным предположения является вывод, что в наблюдаемой Вселенной процессы распада преобладают над процессом соединения. Если это так, то наиболее важный космогонический процесс - образование звезд - должен быть переходом вещества из более плотного состояния в менее плотное, а не наоборот, как предполагает гипотеза образования звезд из газа. Гипотеза, как отмечает Т.А. Агекян, требует, чтобы во Вселенной существовал материал - сверхплотное вещество, которого еще никто ни при каких обстоятельствах не наблюдал и многие свойства которого остаются неизвестными. Однако, по мнению ученых, это обстоятельство нельзя считать недостатком гипотезы по той простой причине, что, изучая проблему происхождения звезд и звездных систем, мы выходим за круг явлений, связанных с обычной деятельностью человека. Сверхплотная материя, если она существует, должна быть недоступна современным средствам наблюдения, так как она занимает очень малые объемы пространства и почти не излучает. Основные ее свойства -необычайно высокая плотность и огромный запас энергии, которая бурно выделяется при распаде такого вещества. Возможность существований сверхплотных масс материи рассматривалась Г. Р. Оппенгеймером, Г. М. Волковым. В свое время В. А. Амбарцумян и Г. С. Саакян показали, что могут существовать массы со сверхплотными ядрами, состоящими из тяжелых элементарных частиц - гиперонов. Радиусы таких объектов составляют всего несколько километров, а массы мало уступают массе Солнца, так что средняя плотность равна миллионам тонн на кубический сантиметр. Планетная космогония Шмидта Анализируя основные закономерности движения планет, ака­демик О. Ю. Шмидт (1891-1956) пришел к заключению, что вы­воды Канта и Лапласа об образовании планет из рассеянного ве­щества в своей основе были верны. Только сам процесс формиро­вания планет был представлен неправильно. В основе космогонической гипотезы Шмидта лежит идея об­разования планет не в результате сжатия раскаленных газовых сгустков, а путем аккумуляции (объединения) холодных твердых частиц и тел. Эти тела - так называемые планетезимали, по своим размерам близкие к метеороидам и астероидам, - в относительно короткое (по астрономическим меркам) время сформировались из пыли и газа дискообразной туманности - протопланетного (допланетного) облака, окружавшего молодое Солнце. Отсюда не­избежно следовало, что наша Земля никогда не была огненно- жидкой. Будучи вначале холодной, она разогрелась лишь потом, благодаря распаду радиоактивных элементов. Рассмотрим про­цесс формирования планет Солнечной сис­темы более подробно. О. Ю. Шмидт предположил, что допланетное облако было захвачено Солнцем, когда оно, двигаясь вокруг центра Галакти­ки, проходило сквозь межзвездную туман­ность. Сейчас большинство космогонистов при­держивается взгляда о совместном образова­нии Солнца и планет из одного и того же га­зопылевого облака. И судить о том, каким было это облако, можно лишь косвенно, ис­ходя из наших знаний о Солнечной системе. Неоценимую услугу в этом во­просе оказывают ученым ме­теориты. Ведь метеоритное ве­щество мало изменилось с тех пор, как около 4,5 млрд. лет на­зад оно собралось в небольшие планетезимали, а затем участво­вало в образовании тел астеро­идных размеров. В последние годы выяснилось, что метеорит­ное вещество хранит в зашиф­рованном виде «запись» даже тех событий, которые предше­ствовали началу эволюции протопланетного облака. Специалисты считают, что так называе­мые углистые хондриты - это просто «спрессованная» меж­звездная пыль, входившая в со­став бывшей протопланетной туманности. Ее начальная масса составляла, видимо, около 5% от массы самого Солнца. Итак, исходным материалом для формирования планет яви­лось допланетное облако. В гипотезе Шмидта это облако не пы­левое и не газовое, а газопылевое, что существенно меняет про­цесс его развития. Поначалу частицы газа и пыли, составлявшие облако, обладали хаотическими движениями и поэтому часто сталкивались между собой. Известно, что столкновения атомов газа происходят упруго, а молекул - почти упруго. Другими сло­вами, атомы и молекулы газа после столкновений отскакивали друг от друга почти с прежними скоростями; беспорядочность их движения почти не уменьшалась. Совсем иначе ведут себя пылинки: они сталкиваются неупру­го. Поэтому скорости пылинок, претерпевших столкновения, уменьшались. Их кинетическая энергия превращалась в тепло­вую; последняя излучалась в окружающее пространство... Как видим, разрабатывая свою гипотезу, Шмидт учел процесс перехода механической энергии движения пылевых частиц в тепло, что сыграло главную роль в развитии газопылевого облака. Это позволило ученому успешно объяснить превращение облака в планетную систему. Потеря кинетической энергии пылинок приводила к тому, что они оседали к экваториальной плоскости газопылевого облака. Это происходило примерно в течение 100 тыс. лет. Так пылевая со­ставляющая облака постепенно превратилась во вращающийся пылевой диск. Произошло как бы расслоение облака на пылевой диск и сфероидальную газовую среду. В какой-то момент плотность частиц в пылевом диске достиг­ла критического значения и наступила так называемая гравита­ционная неустойчивость. В результате диск разбился на отдель­ные пылевые сгущения. Но благодаря гравитационному взаимо­действию такие сгущения сталкивались, объединялись и уплот­нялись, превращаясь в планетезимали. Примерно через 1 млн. лет масса планетезималей становится сравнимой с массой крупнейших астероидов, известных в настоящее время. Они двигались вокруг молодого Солнца в одном направлении - в направлении вращения допланетного облака. Следующий этап развития состоял в объединении плане­тезималей в планеты. Он занял гораздо больше времени, чем предыдущий - образование пылевого диска и формирова­ние роя планетезималей. Относительные скорости планетезималей были сравни­тельно невелики - порядка 10-100 м/с. И, сталкиваясь между собой, они в большинст­ве случаев объединялись. В каждой «зоне питания» находились тела, которые рос­ли гораздо быстрее остальных. Они стали зародышами будущих планет. Результаты моделирования для зоны планет зем­ной группы показали, что Земля приобрела 98% своей массы за 100 млн. лет. Эта оценка продолжительности роста Земли при­надлежит московскому астроному Виктору Сергеевичу Сафронову (1917-1999), который вместе с Борисом Юльевичем Леви­ным (1912-1989), Василием Григорьевичем Фесенковым и не­которыми другими отечественными учеными занимался разра­боткой гипотезы О. Ю. Шмидта. Процесс образования планет-гигантов Юпитера и Сатурна можно разделить на два этапа. На первом, длившемся десятки миллионов лет в области Юпитера и около 100 млн. лет в области Сатурна, тоже происходила аккумуляция планетезималей (твер­дых тел), подобная той, что совершалась в зоне планет земной группы. Но с достижением протопланетами некоторой критиче­ской массы, равной примерно 3-5 массам Земли, начался второй этап образования гигантов - аккреция газа на массивные твер­дые ядра. Она длилась, по-видимому, около 1 млн. лет. Образование твердых ядер Урана и Нептуна заняло несколько сот миллионов лет. Кроме того, температура на окраинах планет­ной системы была очень низкой, поэтому в состав планет-гиган­тов и их спутников вошло еще много замерзшей воды и заморо­женных газов - аммиака и метана. При объединении многочисленных сгущений в планеты про­исходило естественное осреднение их орбит. Образовавшиеся планеты стали двигаться почти в одной плоскости и почти по кру­говым орбитам. В этом едином космогоническом процессе вокруг планет воз­никали их спутники - луны. Образование спутников шло ана­логичным путем. Происхождение спутников Юпитера, Сатурна и Нептуна, обладающих обратным движением, объясняется их захватом. В рамках планетной космогонии Шмидта прекрасное объясне­ние получило четкое разделение больших планет на две группы по своим физико-химическим особенностям. Вначале газопылевое облако было однородно и, подобно Солнцу, состояло в основном из водорода и гелия. К этим двум газам в небольшом количестве были подмешаны другие химические элементы. Твердое вещест­во в виде пылинок составляло около 1 % первоначальной массы допланетного облака. На первом этапе эволюции облака, когда пылевые частицы со­брались в плоский непрозрачный диск, солнечные лучи не могли прогреть всю его толщу одинаково. В зоне современной орбиты Плутона температура внутри диска была ненамного выше абсо­лютного нуля. В зоне орбиты Земли она была близка к О °С. А час­ти диска, расположенные около Солнца, сильно нагревались его лучами, и из пылинок выделялись газы. Наиболее легкие, особенно водород и гелий, рассеивались в пространстве, а также под действием давления света и мощных корпускулярных потоков (солнечного ветра) устремлялись в хо­лодную зону. Там газы обильно намерзали на пылевых частицах и быстро их укрупняли. С течением времени в прогреваемой зоне остались лишь частицы тугоплавких силикатов и металлов. Из этих тяжелых веществ и образовались сравнительно небольшие планеты земной группы. А вдали от Солнца, где в изобилии скопился водород и другие летучие вещества, возникли планеты-гиганты с малой средней плотностью. Так произошло разделение планет на две группы. Такова в общих чертах картина образования планет и их спут­ников по гипотезе академика О. Ю. Шмидта, дополненной ре­зультатами новейших исследований. Гипотеза Шмидта объясняет основные закономерности Солнечной системы: формы, размеры и расположение планетных орбит, распределение планет в пространстве в связи с их массой и многое другое. О.Ю. Шмидту удалось теоретически объяснить закон планетных расстояний, т.е. связь радиуса орбиты с её номером(в порядке удаления от Солнца). Хотя на частном примере Шмидт показал принципиальную возможность захвата, сама идея о захвате ”протопланетного” облака теоретически была плохо обоснована, и эта часть гипотезы Шмидта оказалась самой слабой. В рамках его гипотезы плохо разработан вопрос о происхождении спутников планет, например Луны, которая обладает относительно большой массой и вместе с Землей образуют двойную планету. Остались необъясненными обратное вращение Венеры, положение оси вращения Урана и ряд других деталей, пусть второстепенных, но требующих все-таки объяснения. Солнечная система Солнечная система состоит из 9 планет: Меркурия, Венеры, Земли, Марса, (Юпитера, Сатурна, Урана, Нептуна, Плутона. Все планеты движутся в одном направлении, в единой плоскости (за исключением Плутона) по почти круговым орбитам. От центра до окраины Солнечной системы (до Плутона) 5,5 световых часов. Расстояние от Солнца до Земли 149 млн. км, что составляет 107 его диаметров. Малые планеты, как и большинство спутников планет, не имеют атмосферы, так как сила тяготения на их поверхности недостаточна для удержания газов. В атмосфере Венеры преобладает углекислый газ, в атмосфере Юпитера аммиак. На Луне и Марсе имеются кратеры вулканического происхождения. Радиус Земли 6,3 тыс. км. Масса 6 21 тонн. Плотность 5,5 г/см 3 . Скорость вращения вокруг Солнца 30 км/сек. Земля состоит из литосферы (земной коры), протяженностью 10-80 км, мантии и ядра. В атмосфере Земли, вес которой 5 300 000 млрд. тонн, преобладает азот и кислород. Разделяется она на тропосферу (до 9 -17 км) - «фабрику погоды», стратосферу (до 55 км) - «кладовую погоды», ионосферу, которая состоит из заряженных под воздействием излучений Солнца частиц, и зону рассеивания, располагающуюся на высоте 800-1000 км. Пояса радиации из частиц высоких энергий выше атмосферы предохраняют Землю от жестких космических лучей, губительных для всего живого

    Современные представления об образовании Солнечной системы На рубеже XIX и XX веков большое распространение получила приливная гипотеза. Так, американцы Т. Чемберлен в 1901 г и Ф. Мультон в 1905 г выдвинули концепцию о встрече Солнца со звездой, вызвавшей приливный выброс вещества Солнца, известную под названием «теории встречи» или планетезимальной гипотезы. В соответствии с ней Солнце первоначально представляло собой одиночную постоянную звезду - первичное Солнце. Позднее под действием сил притяжения какой-то близко проходившей крупной звезды часть его вещества была отторгнута и отделилась от него. Затем рассеянное вещество консолидировалось в планетезимали. Последние, вращаясь вокруг Солнца, по-видимому, сконцентрировались в нескольких точках, образовав планеты. После Лапласа, первый ученый, который попытался рассматривать планеты как результат функционирования Солнца как звезды, был Бикерланд. В 1912 году Бикерланд на основе дискретности орбит спутников Солнца предположил, что ионы, выброшенные Солнцем, образовали кольца в магнитном поле Солнца. Учитывая особенности распределения моментов количества движения в Солнечной системе, Г. Аррениус в 1913 году выдвинул теорию о прямом столкновении Солнца со звездой, в результате которого остались Солнце и длинное волокно, которое вращаясь, распалось на части и положило начало планетам. В основу своей концепции ученый положил опять-таки случайный фактор, не учитывающий прослеживающейся в строении солнечной системы закономерности. Похожей на теории Аррениуса была провозглашенная в 1916 году Джеффрисом идея о скользящем столкновении Солнца со звездой, которое привело к возникновению длинного волокна, распавшегося на части. В 1916 году была выдвинута популярная в свое время теория Джинса, английского физика, изучавшего состав газов. Он считал размеры и массу Солнца постоянными, неизменными величинами, так же как и силы его вращения. Его идея заключалась в частичном участии Солнца в формировании системы планет под действием двух вращающихся звезд: Солнца и его «случайной» соседки, вырвавшей из Солнца газовый рукав. Итак, следуя теории Чемберлена-Мультона, Джинс предполагал встречу первичного Солнца и какой-то звезды. Однако в остальном его объяснения существенно отличаются от положения Чемберлена и Мультона. По Джинсу наиболее мощное отделение вещества при прохождении звезды около Солнца должно произойти в направлении линии наикратчайшего расстояния между двумя телами. Далее вещество, отделившееся от солнечной атмосферы, должно было образовать массу сигарообразной формы со значительным сосредоточением материала в центральной части. Наиболее отдаленная от Солнца часть массы, состоявшая главным образом из внешнего вещества Солнца, должна была иметь малую плотность, в то время как ближняя к Солнцу часть, преимущественно состоявшая из вещества, извлеченного из более глубоких зон Солнца, должна была иметь более высокую плотность. Предполагается, что позднее сигарообразная масса разделилась на более мелкие массы, сконденсировавшиеся и образовавшие соответствующие планеты. Так гипотетически объясняется приуроченность к средней части системы двух наиболее крупных планет - Юпитера и Сатурна, а также и более высокая плотность вещества внутренних планет по сравнению с внешними. В этой своей догадке Джинс интуитивно предвидел роль Солнечных зон звездной трансформации, перемещающихся вглубь звезды, и при последовательном сбросе оболочек дающих более уплотненное вещество формирующимся планетам. Джинс также был очень близок к решению проблемы о перетоке вещества в системе тесной двойной звезды, не являющейся случайным образованием. Гипотеза Джинса была несколько видоизменена Джеффрисом, который дал геофизическое и геохимическое обоснование представлений о прохождении всех планет в прошлом через жидкую стадию развития. Одним из критиков гипотезы Джинса и Джеффриса был Рэссел (1935 г.), утверждавший, что концепция Джинса не может объяснить существующих размеров Солнечной системы и, особенно угловую скорость Солнца. Итак, можно сказать, что и Лаплас и Джинс оба стояли на правильном пути к решению задачи, и именно из разрешения противоречия в их взглядах могла родиться истина о частичном участии Солнца в формировании системы. Не случайно, видимо, ученый Берлаге в 1930 году снова вернулся к идее Лапласа и выдвинул более прогрессивную гипотезу, чем у Джинса, в которой за основу принял выбросы частиц из Солнца и образование газовых дисков или вращающихся колец, которые дали начало планетам. Интересно, что уже в 1935 году ученым Рэсселом была высказана мысль о том, что Солнце было двойной звездой. Однако, не доведя свою мысль до логического завершения, ученый предположил, что эту двойную звезду разорвала встречная звезда, образовав волокно. Английский теоретик Литтлтон высказал много интересных мыслей, в частности, в 1936 году идею о причастности Солнца к тройной звездной системе. При этом, пытаясь устранить указанные Рэсселом дефекты теории Джинса, Литтлтон сделал допущение, что какая-то звезда приблизилась к существовавшей двойной звезде Солнца и обусловила разрыв пары. Приливные силы, вызванные близко находившимися третьей звездой и звездой-напарницей, привели к возникновению между ними удлиненной ленты материи (волокна), которая позднее была захвачена Солнцем и конденсировалась вокруг него в виде планет. Математически было показано, что при движении двух звезд в разном направлении, возникающая меж ними лента материи может быть легко захвачена Солнцем. Кроме того Литтлтоном выдвинута гипотеза о том, что Плутон является бывшим спутником Нептуна, который после столкновения с другой планетой (Тритоном) был выброшен на свою сильно эксцентрическую и наклонную орбиту. Таким образом, ученым приходила в голову мысль о том, что Солнце развивалось не в одиночку, а в составе многокомпонентной системы. В 1942 году X. Альвен высказал космическую гипотезу, согласно которой Солнце наткнулось на межзвездное облако газа, атомы которого, падая на Солнце, ионизировались и стали двигаться по орбитам, предписываемым магнитным полем. Ионизированные атомы двигались вдоль линий магнитного поля Солнца и поступали в определенные места равновесия экваториальной плоскости. В том случае, когда атомы испытывали ускорение в сторону Солнца с определенными скоростями и ионизировались на определенных расстояниях от Солнца, математический расчет показал, что конеч- ное распределение плотности ионов грубо должно соответствовать расположению внешних планет. Теория Альвена интересна, но считается, что она не может объяснить возникновения внутренних планет. Кроме того, возможность встречи Солнца с газовым облаком рассматривается как маловероятная. Как продолжение гипотезы Альвена в 1943 году советский математик и физик О. Шмидт выдвинул «метеоритную теорию». Согласно этой широко известной теории, Солнце встретило и захватило космическую туманность межзвездных частиц, из которых в результате соударений образовались планеты. Он исходил из предпосылок двух неразрешенных вопросов:«где же нашлась у Солнца сила, чтобы так далеко отбросить будущую Землю, и где эта одинокая, проходившая мимо звезда?». И этот вопрос Шмидт задавал не случайно. Он никак не предполагал, что этой звездой был двойник Солнца, ныне угасший и поэтому не проявляющий свойств звезды. Следуя Канту, Шмидт взял за основу развивающейся материи бесконечные скопления холодной космической пыли, которые образовывали, по его мнению, бесформенные сгустки газово-пылевых веществ. Каждый сгусток постепенно рос, вбирая в себя гигантские обломки и маленькие частицы из межзвездной туманности, падающие на поверхность и отдающие силу движения растущей планете. Шмидт считал, что лишь позднее началось колебание и вращение Земли, а также частичный разогрев и расплавление горных пород благодаря распаду радиоактивных элементов. Интересно, что радиоактивному распаду элементов Шмидт приписал определенную роль в происхождении планеты, не уделив при этом никакого внимания ядерному синтезу ее вещества, т.е. рассматривал качественный состав космических тел, как вполне образовавшийся, а не в постепенном развитии, от чего за три столетия до Шмидта предостерегал еще Декарт. Итак, по Шмидту, планеты родились не из самого Солнца, в чем он оказался прав только частично. При наличии высокого уровня математического обоснования космогоническая теория Шмидта полностью обошла вопрос качественного развития материи. Как показал Я. Мияки в 1969 году, прямые наблюдательные данные астрономов давно со всей несомненностью показали, что химический состав разных звезд различен, и что различие состава звезд, несомненно, обусловлено их эволюцией и связано со спектральным классом звезды. Огромной заслугой астрономов всех веков является скрупулезное изучения параметров движения небесных тел Солнечной системы и Галактики и других количественных характеристик: их размеров, массы, плотности, альбедо, звездной величины, спектрального химического состава, температуры и т.д. Все это создало предпосылки для установления взаимосвязи целого ряда процессов и явлений, происходящих в космосе и управляющих формированием и развитием космических тел, завершившихся созданием концепции взаимообусловленности атомообразования и планетообразования в космосе (КВАП) А. Е. Ходькова (1943-45 гг). Согласно рассматриваемой концепции КВАП космические тела возникают и развиваются как внешние следствия внутренних процессов звездной эволюции - развития атомов химических элементов. Звезды являются естественными производителями ядер химических элементов, развитие их протекает как последовательный периодический стадийный процесс формирования ядер периодов химических элементов и вторичных тел - спутников звезд. Происходит это через взрывные события, определяющиеся высвобождением избыточной космической энергии. Первоначально А.Е. Ходькову представлялось, что наблюдаемая Солнечно-планетная система является продуктом развития одиночной звезды с непосредственно порождаемыми ею спутниками. История солнечной системы представлялась как история развития по законам КВАП одиночной звезды Солнца. В процессе последующего анализа и расчетов, А.Е.Ходьковым выяснено, что в составе Солнечной системы непосредственно планетами Солнца являются лишь Меркурий и Венера. Остальные планеты - ранее претерпевшие свой цикл развития звезды - от зарождения до затухания, с той или иной выраженной полнотой эволюции по закону КВАП. Типичным представителем такой угасшей звезды является Юпитер. Расчеты показали, что наблюдаемая Солнечная система - гетерогенна и разновозрастна, и среди известных всем нам планет, действительно, производными по механизму КВАП являются только Меркурий и Венера. Земля и Марс рождены Юпитером и перехвачены от него Солнцем. Сатурн, Уран, Нептун, Юпитер - бывшие двойники солнца и друг друга. Все они в свое время развивались по закону КВАП, порождая периоды химических элементов и соответствующие спутники. После блистательных успехов ядерной физики недопустимо было обходить молчанием вопрос о происхождении химических элементов и качественном развитии материи в Космических масштабах. Если механистическая теория Лапласа для XVIII века была крупнейшим научным достижением и успехом, то для XX века такой уровень решения космогонической проблемы уже не достаточен. Надо было ставить вопрос о развитии химических элементов, как о кардинальной проблеме космогонии. Вероятно, возраст Луны и Земли близок возрасту Солнца, полагал в 50-60 гг академик В.Фесенков. И вещество, из которого они состоят, возникало из околосолнечной газово-пылевой туманности, а не из межзвездных скоплений. По Фесенкову, Луна и Земля - «дети молодого Солнца», которое вращаясь и постепенно сгущаясь, рождало вокруг себя вихревые сгущения - будущие планеты и их спутники. В отношении Луны ученый оказался прав, ее происхождение, действительно, связано с взрывом молодого Солнца. Вейцзекер в 1944 году исследовал проблему эволюции Вселенной с гидродинамической точки зрения и показал, что в сжимающейся оболочке протосолнца могли образовываться турбулентные завихрения, из которых возникли планеты и спутники. По его мнению, первичная Вселенная состояла из газов, содержавших различные элементы, при этом скорость движения газового вещества в разных местах была разной. Вследствие этого возникали турбулентные токи и многочисленные вихри. Плотность газа возрастала в направлении к центру каждого вихря, и в этих местах постепенно начиналась конденсация атомов. Таким образом, Вселенная распалась на множество вихрей, образовавших материнские туманности, в чем усматривается непосредственная связь с учением Декарта. Внутри каждой туманности существовали свои турбулентные токи, образовавшие материнские тела звездных скоплений, и наконец, в каждом звездном скоплении возникали постоянные звезды и планеты. Солнце является одной из возникших таким образом постоянных звезд. Предполагается, что на ранней стадии развития оно было окружено быстро вращавшейся газовой мантией с массой около 1/10 массы Солнца. Благодаря вращению, газовая мантия приобрела дисковидную форму; температура внутри газовой мантии убывала обратно пропорционально квадрату расстояния от Солнца. Внутри этой линзы те же турбулентные токи привели к возникновению вихрей, вызвавших конденсацию и соответственно - образование планет. Указанная вихревая теория объясняет большую плотность внутренних планет и их меньшие размеры следующим образом. Поскольку температура в дисковидной линзе ниже во внешней ее части, то здесь наиболее возможно перенасыщение газового вещества и легче всего осуществима его конденсация. При конденсации, во внутренней части концентрировалось только неорганическое вещество, в то время, как внешняя часть, вследствие более низкой температуры состояла из водорода, метана и аммиака. Количество конденсировавшегося вещества было больше во внешней части, в соответствии с чем, центры конденсации там росли быстрее, чем внутренние центры, улавливавшие вещество гравитационно. Во внутренней части, материал газовой мантии каждого центра, по-видимому, диссипировал до приобретения гравитационной массы, достаточно большой для захвата значительного количества окружающего материала. Поэтому, по Вейцзекеру, Марс и другие внутренние планеты имеют меньшие размеры и более высокую плотность, а Юпитер и все внешние планеты - меньшую плотность и более крупные массы. Однако, и в данном случае, остается неясным вопрос, почему так мала угловая скорость Солнца, на который его теория ответа не дает. Вейцзекер предполагал, что исходный состав газа первичной Вселенной был таким же, как и сейчас, а турбулентное движение происходило в нем на первой стадии развития процесса, что неубедительно. Мысль ученых снова вернулась к идее двойной звезды Солнца, когда Хойл в 1944 году предположил, что второй компонент двойной звезды стал сверхновой звездой, которая сбросила газовые оболочки и перестала существовать. Хойл создал теорию происхождения Солнечной системы, исходя из представления Литтлтона о двойной звезде. По Хойлу, Солнце принадлежала к группе двойных звезд, причем вторая звезда, вероятно, была больше Солнца. Масса второй звезды была настолько велика, что высокое потребление водорода, являющегося источником энергии звезд, привело к истощению его запасов в очень короткий промежуток времени. В результате, для сохранения внутреннего равновесия тела и излучаемой энергии большая звезда начала сжиматься. Сокращение звезды вызвало повышение ее внутренней температуры и скорости вращения, пока наконец ни было достигнуто состояние такой неустойчивости, при котором произошел взрыв типа сверхновой звезды. При таком взрыве звезда должна была быстро разрушиться, извергая свое вещество, наподобие колеса фейерверка. При возникших высоких температурах, гелий в центральной части зоны взрыва, по Хойлу, должен был синтезироваться в более тяжелые элементы. В любом случае, в результате взрыва сверхновой звезды возник колоссальный газовый объем или пылевое облако, которое должно было остаться около Солнца, образовав мантию. Это облако должно было постепенно остывать, вследствие чего происходила конденсация, и частицы пыли концентрировались на месте современных планет. Предполагая, что взрываться может любая звезда, кроме Солнца, Хойл был весьма близок к пониманию функции второй звезды, справедливой и для случая, когда она осталась в системе и перестала быть звездой. Ошибка Хойла, так же как и других исследователей,- в том, что считалось: «постоянная» звезда вечно должна быть звездой. Но уже совсем недалеко до понимания, что все сущее должно иметь начало и конец, так же как и звезды. Гипотеза Уиппла (1947 г.) основана на космогонической концепции пылевого облака, которое сходно с находимыми в Млечном Пути массами и состоит из газового вещества и мелких твердых частиц, которые постепенно концентрировались в узлах и ядрах. Само пылевое облако не имело углового момента, но внутри него существовали течения, позволявшие частицам конденсироваться и образовывать планеты. Так Уиппл объяснил небольшое значение углового момента Солнца, а орбитальный момент планет - как результат существования течений внутри пылевого облака. В том же 1947 году Куйпер выдвинул «аккумулятивную или, аккреционную теорию», по которой первично существовало окружавшее первичное Солнце солнечное облако, которое быстро приобрело форму уплощенного диска, ориентированного в эллиптической плоскости современной солнечной системы. Оно имело массу около 1/10 массы Солнца; его химический состав пред- положительно соответствовал современной распространенности элементов во Вселенной. Облако представляло собой смесь газового вещества и тонкой пыли; действие турбулентных потоков внутри облака привело к неравномерному распределению плотностей. Как следствие - облако претерпело разделение на вихри или протопланеты. Центры тяжести протопланет были близки к положению современных планет. Первоначально протопланеты также имели дисковидную форму и быстро аккумулировали вещество в соответствующих местах вокруг Солнца. Вначале протопланеты занимали все пространство между Меркурием и Плутоном, соприкасались друг с другом, но по мере развития аккреции, разъедин- лись. Облако и протопланеты из-за утечки с периферии экваторов газового вещества постепенно теряли угловую скорость. Энергия, терявшаяся при этом, по Куйперу, возмещалась гравитационной энергией планетной конденсации, равно как и энергией падающего на Солнце вещества. Хотя происхождение солнечного облака Хойла и Куйпера и не ясно, оно, по-видимому, возникло одновременно с Солнцем и имело гравитационную неустойчивость в оболочке, окружавшей протосолнце. Таким образом, противоречивые данные (в импульсах вращения) об участии Солнца в формировании Солнечной системы трактовались исследователями весьма однозначно, по взаимоисключающему признаку. Из 20 наиболее выдающихся исследователей Космоса, полностью отрицали роль Солнца в образовании Солнечной системы: Декарт, Кант, Шмидт, частично отрицали роль Солнца - Альвен и Уиппл. Предполагали формирование Солнечной системы только за счет эволюции Солнца: Лаплас, Бикерланд, Берлаге, Фесенков, Вейцзекер, Куйпер. Многие были не так далеко от истины, предполагая тесное взаимодействие Солнца с другой звездой: это Аррениус, Чемберлен, Мультон, Бикертон, Джеффрис, Рэссел, Хойл. В каждом из упомянутых учений содержалась доля истины, объясняющая одну из отдельных особенностей формирования Солнечной системы.

    В 1944 году в «Докладах Академии наук СССР» были опубликованы две первые статьи Отто Юльевича Шмидта, посвященные космогонической гипотезе солнечной системы. И до конца жизни академик О. Шмидт занимался ее разработкой, создав большой творческий коллектив из молодых талантливых астрономов и математиков.

    Интерес к его работе был огромен. Когда 31 января 1947 года он решил выступить с докладом на пленарном заседании II Всероссийского географического съезда, академия была поистине атакована людьми. Не только конференц-зал, но и все прилегавшие к нему помещения были заполнены до отказа. Затаив дыхание люди слушали глуховатый голос О. Шмидта, докладывавшего «Новую теорию происхождения Земли и планет». В чем же заключалась основная идея его гипотезы?

    Некогда, возможно несколько миллиардов лет назад, одинокая звезда — Солнце — встретила на своем пути во вселенной большую газопылевую туманность. Таких скоплений довольно много в космосе, и встреча с ними не носит столь уникального характера, как, например, встреча с другой звездой. В результате такого свидания значительная часть туманности последовала за Солнцем. Избыток его скорости относительно туманности придал диффузной материи момент количества движения, не связанный с моментом вращения светила. По законам природы, облако начало вращаться, сплющиваться, сжиматься. Отдельные частицы стали сливаться друг с другом, образуя более крупные тела. И вот уже не газопылевое облако, а густой поток метеорных тел облетает Солнце. Метеоры сталкиваются, слипаются. В областях, близких к Солнцу, обращаются плотные комья будущих планет. Дальше от живительного тепла в состав этих комьев входят более легкие вещества, в том числе замороженные газы. Так образовалось солнечное семейство.

    О. Шмидт не был астрономом-профессионалом. Да и сама идея встречи и последующего захвата газопылевого облака Солнцем во время его движения вокруг центра Галактики тоже была не нова. Об этом еще в конце 19 и в начале 20 столетия говорили и писали многие. О. Шмидт внимательно изучил гипотезы предшественников, взяв от них рациональные зерна.

    У И. Канта он взял идею о пылевом облаке, о пылевых частицах, как исходном материале для формирования планет, идею «холодного» происхождения Земли.

    У П. Лапласа — мысли о роли конденсации газа в формировании планет, аналогию с туманностями, наблюдаемыми в нашей Галактике, мысль о сжатии, уплотнении вращающейся туманности.

    У Ф. Мультона и Т. Чемберлина он взял идею о планетезималях как переходной форме к образованию планет.

    У Д. Джинса — идею о том, что момент количества движения планет может быть привнесен извне в результате встречи Солнца с другим небесным телом.

    «Но, несмотря на это, — пишет В. Бронштэн в книге «Беседы о космосе и гипотезах», — гипотеза Шмидта не была похожа ни на одну из ранее предложенных гипотез и не являлась их компиляцией. Эта гипотеза была совершенно самостоятельной».

    Новая гипотеза О. Ю. Шмидта получилась отменной. Она легко расправлялась с целым рядом трудностей, встречавшихся у других авторов, неплохо объясняла главные особенности солнечной системы. Но были у нее и слабые стороны. Одна из них — само предположение о захвате Солнцем части встретившегося газопылевого облака.

    Здесь нам придется снова вернуться к законам, диктуемым небесной механикой. А законы эти говорят, что одинокая звезда одинокую туманность захватить в принципе не может. Это было доказано при решении «задачи двух тел».

    Представим себе: в пустом бесконечном пространстве имеются два тела: одним из них пусть будет неподвижное Солнце — тело А, другим — пролетающая мимо туманность — тело В. Под действием сил притяжения тела А траектория тела В искривляется и становится гиперболой. Но ветви гиперболы уходят в бесконечность. Чтобы осуществился захват туманности (тела В), ее надо сначала затормозить, чтобы перевести с гиперболической орбиты на эллиптическую. Однако одно Солнце сделать это не в состоянии. Даже, если бы у туманности не было первоначально никакой скорости и сближаться оба тела стали бы под действием лишь собственных сил притяжения, то и тогда захват произойти бы не смог. Туманность, пришедшая из бесконечности, обогнула бы Солнце по параболической траектории и снова ушла бы в бесконечность. Нет, для захвата нужны другие условия. Что, если рассмотреть задачу не двух, а трех тел?

    Впрочем, такая задача уже была решена более десяти лет назад французским математиком Жаном Шази. Согласно его решению и в случае трех тел захват одного из них также невозможен. О. Шмидт не поверил Ж. Шази. Сформулировав начальные условия, он засел за расчеты. А когда первая прикидка показала, что, может быть, все-таки прав он, а не Ж. Шази, передал задачу П. Парийскому; тому самому знаменитому математику, который доконал своим численным расчетом гипотезу Д. Джинса. Не подвел П. Парийский и в этом случае. Уже в первом своем докладе О. Шмидт уверенно говорил о возможности захвата в системе трех тел.

    Однако этот вариант хоть и имел вероятность большую, нежели джинсовская встреча звезды со звездой, был все же весьма искусствен. Потому-то гипотеза гравитационного захвата и подверглась столь суровой критике на первом совещании по вопросам космогонии.

    Мысли О. Шмидта были полностью заняты этой проблемой. В 1951 году ему исполнилось 60 лет. Друзья преподнесли юбиляру шутливые вирши:
    На бреге бездны мировой
    Сидел он с длинной бородой
    И вдаль глядел…

    Так начинались эти стихи. Потом шло рифмованное описание механизма гипотезы. И заканчивалась поэма сетованием на нерешенную проблему захвата:

    И перед новою теорьей
    Главой склонился б и Лаплас,
    Когда бы о захвата роли
    Не продолжался спор у нас.

    А спор о механизме гравитационного захвата действительно все продолжался. И хотя ряд астрономов предлагали свои оригинальные решения этой проблемы, большинство специалистов склонялось в пользу совместного образования Солнца и протопланетного облака. В этой части проблемы постепенно все возвращалось «на круги своя», возвращалось в лоно классичеческой гипотезы.




    Рассказать друзьям