Применение теории игр в экономике. Основные понятия теории игр и игровых моделей

💖 Нравится? Поделись с друзьями ссылкой

Теория игр является математическим методом исследования оптимальных стратегий в играх. Под термином «игра» следует понимать взаимодействие двух или более сторон, которые стремятся реализовать свои интересы. У каждой стороны есть и своя стратегия, способная привести к победе или поражению, что зависит от того, каким образом ведут себя игроки. Благодаря теории игр появляется возможность найти максимально эффективную стратегию, беря во внимание представления о других игроках и их потенциале.

Теория игр представляет собой особый раздел исследования операций. В большинстве случаев методы теории игр используются в экономике, но иногда и в других социальных науках, например, в , политологии, социологии, этике и некоторых других. С 70-х годов XX века она также стала использоваться и биологами с целью изучения поведения животных и теории эволюции. Кроме того, сегодня теория игр имеет очень большое значение в области кибернетики и . Именно поэтому мы и хоти вам о ней рассказать.

История теории игр

Наиболее оптимальные стратегии в области математического моделирования учёные предлагали ещё в XVIII веке. В XIX веке задачи ценообразования и производства в условиях рынка с малой конкуренцией, впоследствии ставшие классическими примерами теории игр, рассматривались такими учёными, как Жозеф Бертран и Антуан Курно. А в начале XX столетия выдающимися математиками Эмилем Борелем и Эрнстом Цермело была выдвинута идея математической теории конфликта интересов.

Истоки математической теории игр следует искать в неоклассической экономике. Изначально основы и аспекты этой теории излагались в работе Оскара Моргенштерна и Джона фон Неймана «Теория игр и экономическое поведение» в 1944 году.

Представленная математическая область также нашла некоторое отражение и в социальной культуре. Например, в 1998 году Сильвия Назар (американская журналистка и писательница) выпустила книгу, посвящённую Джону Нэшу – лауреату Нобелевской премии по экономике и специалисту по теории игр. В 2001 году по мотивам данной работы сняли фильм «Игры разума». А ряд американских телешоу, таких как «NUMB3RS», «Alias» и «Friend or Foe» время от времени в своих эфирах также ссылаются на теорию игр.

Но отдельно следует сказать о Джоне Нэше.

В 1949 году им была написана диссертация на тему теории игр, а через 45 лет он был удостоен Нобелевской премии по экономике. В самых первых концепциях теории игр подвергались анализу игры антагонистического типа, в которых имеются игроки, выигравшие за счёт проигравших. Но Джон Нэш разработал такие аналитические методы, согласно которым все игроки либо проигрывают, либо выигрывают.

Разработанные Нэшем ситуации впоследствии назвали «равновесием по Нэшу». Отличаются они тем, что все стороны игры применяют наиболее оптимальные стратегии, благодаря чему и создаётся устойчивое равновесие. Сохранять равновесие очень выгодно для игроков, ведь в противном случае какое-то одно изменение может негативно сказаться на их положении.

Благодаря деятельности Джона Нэша теория игр получила мощный толчок в своём развитии. Кроме того, были подвергнуты серьёзному пересмотру математические инструменты экономического моделирования. Джон Нэш смог доказать, что классическая точка зрения на вопрос конкуренции, где каждый играет только за себя, не является оптимальной, и самыми эффективными стратегиями являются такие, в которых игроки делают лучше себе, изначально делая лучше другим.

Несмотря на то, что изначально в поле зрения теории игр находились и экономические модели, до 50-х годов прошлого века она была лишь формальной теорией, ограниченной рамками математики. Однако со второй половины XX века предпринимаются попытки её использования и в экономике, и в антропологии, и в технике, и в кибернетике, и в биологии. В период Второй мировой войны и по её окончании теорию игр начали рассматривать военные, разглядевшие в ней серьёзный аппарат в деле развития стратегических решений.

В период 60-70-х годов интерес к данной теории угас, невзирая даже на то, что она давала хорошие математические результаты. Но с 80-х годов начинается активное применение теории игр на практике, главным образом, в менеджменте и экономике. В течение же нескольких последних десятилетий актуальность её значительно выросла, а некоторые современные экономические направления и вовсе невозможно представить без неё.

Не будет лишним сказать также и о том, что существенный вклад в развитие теории игр внёс труд «Стратегия конфликта» 2005 года лауреата Нобелевской премии по экономике Томаса Шеллинга. В своей работе Шеллинг рассмотрел множество стратегий, которыми пользуются участники конфликтного взаимодействия. Данные стратегии совпали с тактиками конфликт-менеджмента и аналитическими принципами, применяющимися в , а также с тактиками, которые используются для управления конфликтами в организациях.

В психологической науке и ряде других дисциплин понятие «игра» имеет несколько иной смысл, чем в математике. Культурологическая интерпретация термина «игра» была представлена в книге «Homo Ludens» Йохана Хёйзинга, где автор толкует о применении игр в этике, культуре и правосудии, а также указывает на то, что сама игра существенно превосходит человека по возрасту, ведь и животные тоже склонны играть.

Также понятие «игра» можно встретить в концепции Эрика Бёрна, известного по книге « ». Здесь, правда, идёт речь об исключительно психологических играх, основой которых является трансакционный анализ.

Применение теории игр

Если говорить о математической теории игр, то в настоящее время она находится на стадии активного развития. Но математическая база по своей сути является очень затратной, по причине чего применяется она, главным образом, только если цели оправдывают средства, а именно: в политике, экономике монополий и распределения рыночной власти и т.д. В остальном же, теория игр применяется в исследованиях поведения людей и животных в огромном количестве ситуаций.

Как уже и было сказано, сначала теория игр развивалась в пределах границ экономической науки, благодаря чему стало возможным определить и интерпретировать поведение в различных ситуациях экономических агентов. Но позже область её применения значительно расширилась и стала включать в себя множество социальных наук, благодаря чему с помощью теории игр сегодня объясняется поведение человека в психологии, социологии и политологии.

Специалисты используют теорию игр не только для того чтобы объяснить и предсказать человеческое поведение – было предпринято множество попыток по использованию этой теории с целью разработать эталонное поведение. Кроме того, философы и экономисты долгое время при помощи неё старались как можно лучше понять хорошее или достойное поведение.

Таким образом, можно заключить, что теория игр стала настоящим переломным моментом в развитии множества наук, и сегодня является неотъемлемой частью процесса изучения различных аспектов поведения человека.

ВМЕСТО ЗАКЛЮЧЕНИЯ: Как вы заметили, теория игр довольно тесно взаимосвязана с конфликтологией – наукой, посвящённой изучению поведения людей в процессе конфликтного взаимодействия. И, на наш взгляд, эта область является одной из самых главных не только среди тех, в которых теория игр должна применяться, но и среди тех, которые должен изучать сам человек, ведь конфликты, как ни крути, являются частью нашей жизни.

Если у вас есть желание разобраться в том, и какие вообще существуют стратегии поведения в них, мы предлагаем вам пройти наш курс по самопознанию, который в полной мере предоставит вам такую информацию. Но, помимо этого, пройдя наш курс, вы сможете провести всестороннюю оценку своей личности вообще. А это значит, что вы будете знать и о том, как вести себя в случае конфликта, и каковы ваши личностные преимущества и недостатки, жизненные ценности и приоритеты, предрасположенности к работе и творчеству, и много чего ещё. В общем, это очень полезный и нужный инструмент для каждого, кто стремится к развитию.

Наш курс находится – смело приступайте к самопознанию и совершенствуйте себя.

Мы желаем вам успехов и умения быть победителем в любой игре!

Тео́рия игр - математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу - в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.

Теория игр - это раздел прикладной математики, точнее - исследования операций. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках - социологии, политологии, психологии, этике и других. Начиная с 1970-х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции . Очень важное значение она имеет для искусственного интеллекта и кибернетики, особенно с проявлением интереса к интеллектуальным агентам.

История.

Оптимальные решения или стратегии в математическом моделировании предлагались ещё в XVIII в. Задачи производства и ценообразования в условиях олигополии, которые стали позже хрестоматийными примерами теории игр, рассматривались в XIX в. А. Курно и Ж.Бертраном. В начале XX в. Э.Ласкер, Э.Цермело, Э.Борель выдвигают идею математической теории конфликта интересов.

Математическая теория игр берёт своё начало из неоклассической экономики . Впервые математические аспекты и приложения теории были изложены в классической книге 1944 года Джона фон Неймана и Оскара Моргенштерна «Теория игр и экономическое поведение»(англ. Theory of Games and Economic Behavior ).

Эта область математики нашла некоторое отражение в общественной культуре. В 1998 году американская писательница и журналистка Сильвия Назар издала книгу о судьбе Джона Нэша, нобелевского лауреата по экономике и учёного в области теории игр; а в 2001 по мотивам книги был снят фильм «Игры разума ». Некоторые американские телевизионные шоу, например, «Friend or Foe », «Alias» или «NUMB3RS», периодически ссылаются на теорию в своих эпизодах.

Дж. Нэш в 1949 году пишет диссертацию по теории игр, через 45 лет он получает Нобелевскую премию по экономике. Дж. Нэш после окончания Политехнического института Карнеги с двумя дипломами - бакалавра и магистра - поступил в Принстонский университет, где посещал лекции Джона фон Неймана. В своих трудах Дж. Нэш разработал принципы «управленческой динамики». Первые концепции теории игр анализировали антагонистические игры, когда есть проигравшие и выигравшие за их счет игроки. Нэш разрабатывает методы анализа, в которых все участники или выигрывают, или терпят поражение. Эти ситуации получили названия «равновесие по Нэшу», или «некооперативное равновесие», в ситуации стороны используют оптимальную стратегию, что и приводит к созданию устойчивого равновесия. Игрокам выгодно сохранять это равновесие, так как любое изменение ухудшит их положение. Эти работы Дж. Нэша сделали серьёзный вклад в развитие теории игр, были пересмотрены математические инструменты экономического моделирования. Дж. Нэш показывает, что классический подход к конкуренции А.Смита, когда каждый сам за себя, неоптимален. Более оптимальны стратегии, когда каждый старается сделать лучше для себя, делая лучше для других.

Хотя теория игр первоначально и рассматривала экономические модели, вплоть до 1950-х она оставалась формальной теорией в рамках математики. Но уже с 1950-х гг. начинаются попытки применить методы теории игр не только в экономике, но в биологии, кибернетике, технике, антропологии. Во время Второй мировой войны и сразу после нее теорией игр серьёзно заинтересовались военные, которые увидели в ней мощный аппарат для исследования стратегических решений.

В 1960-1970 гг. интерес к теории игр угасает, несмотря на значительные математические результаты, полученные к тому времени. С середины 1980-х гг. начинается активное практическое использование теории игр, особенно в экономике и менеджменте. За последние 20 - 30 лет значение теории игр и интерес значительно растет, некоторые направления современной экономической теории невозможно изложить без применения теории игр.

Большим вкладом в применение теории игр стала работа Томаса Шеллинга, нобелевского лауреата по экономике 2005 г. «Стратегия конфликта». Т.Шеллинг рассматривает различные «стратегии» поведения участников конфликта. Эти стратегии совпадают с тактиками управления конфликтами и принципами анализа конфликтов в конфликтологии (это психологическая дисциплина) и в управлении конфликтами в организации (теория менеджмента). В психологии и других науках используют слово «игра» в других смыслах, нежели чем в математике. Некоторые психологи и математики скептически относятся к использованию этого термина в других смыслах, сложившихся ранее. Культурологическое понятие игры было дано в работе Йохана Хёйзинга «Homo Ludens» (статьи по истории культуры), автор говорит об использовании игр в правосудии, культуре, этике.. говорит о том, что игра старше самого человека, так как животные тоже играют. Понятие игры встречается в концепции Эрика Бёрна «Игры, в которые играют люди, люди, которые играют в игры». Это сугубо психологические игры, основанные на трансакционном анализе. Понятие игры у Й.Хёзинга отличается от интерпретации игры в теории конфликтов и математической теории игр. Игры также используются для обучения в бизнес-кейсах, семинарах Г. П. Щедровицкого, основоположника организационно-деятельностного подхода. Во время Перестройки в СССР Г. П. Щедровицкий провел множество игр с советскими управленцами. По психологическому накалу ОДИ (организационно-деятельностные игры) были так сильны, что служили мощным катализатором изменений в СССР. Сейчас в России сложилось целое движение ОДИ. Критики отмечают искусственную уникальность ОДИ. Основой ОДИ стал Московский методологический кружок (ММК).

Математическая теория игр сейчас бурно развивается, рассматриваются динамические игры. Однако математический аппарат теории игр затратен. Его применяют для оправданных задач: политика, экономика монополий и распределения рыночной власти и т. п. Ряд известных ученых стали Нобелевскими лауреатами по экономике за вклад в развитие теории игр, которая описывает социально-экономические процессы. Дж. Нэш, благодаря своим исследованиям в теории игр, стал одним из ведущих специалистов в области ведения «холодной войны», что подтверждает масштабность задач, которыми занимается теория игр.

Нобелевскими лауреатами по экономике за достижения в области теории игр и экономической теории стали: Роберт Ауманн , Райнхард Зелтен, Джон Нэш, Джон Харсаньи, Уильям Викри, Джеймс Миррлис, Томас Шеллинг, Джордж Акерлоф, Майкл Спенс, Джозеф Стиглиц , Леонид Гурвиц, Эрик Мэскин, Роджер Майерсон, Ллойд Шепли, Элвин Рот.

Применение теории игр.

Теория игр, как один из подходов в прикладной математике, применяется для изучения поведения человека и животных в различных ситуациях. Первоначально теория игр начала развиваться в рамках экономической науки, позволив понять и объяснить поведение экономических агентов в различных ситуациях. Позднее область применения теории игр была расширена на другие социальные науки; в настоящее время теория игр используется для объяснения поведения людей в политологии, социологии и психологии. Теоретико-игровой анализ был впервые использован для описания поведения животных Рональдом Фишером в 30-х годах XX века (хотя даже Чарльз Дарвин использовал идеи теории игр без формального обоснования). В работе Рональда Фишера не появляется термин «теория игр». Тем не менее, работа по существу выполнена в русле теоретико-игрового анализа. Разработки, сделанные в экономике, были применены Джоном Майнардом Смитом в книге «Эволюция и теория игр». Теория игр используется не только для предсказания и объяснения поведения; были предприняты попытки использовать теорию игр для разработки теорий этичного или эталонного поведения. Экономисты и философы применяли теорию игр для лучшего понимания хорошего (достойного) поведения. Вообще говоря, первые теоретико-игровые аргументы, объясняющие правильное поведения, высказывались ещё Платоном.

Описание и моделирование.

Первоначально теория игр использовалась для описания и моделирования поведения человеческих популяций. Некоторые исследователи считают, что с помощью определения равновесия в соответствующих играх они могут предсказать поведение человеческих популяций в ситуации реальной конфронтации. Такой подход к теории игр в последнее время подвергается критике по нескольким причинам. Во-первых, предположения, используемые при моделировании, зачастую нарушаются в реальной жизни. Исследователи могут предполагать, что игроки выбирают поведения, максимизирующее их суммарную выгоду (модель экономического человека), однако на практике человеческое поведение часто не соответствует этой предпосылке. Существует множество объяснений этого феномена - нерациональность, моделирование обсуждения, и даже различные мотивы игроков (включая альтруизм). Авторы теоретико-игровых моделей возражают на это, говоря, что их предположения аналогичны подобным предположениям в физике. Поэтому даже если их предположения не всегда выполняются, теория игр может использовать как разумная идеальная модель, по аналогии с такими же моделями в физике. Однако, на теорию игр обрушился новый вал критики, когда в результате экспериментов было выявлено, что люди не следуют равновесным стратегиям на практике. Например, в играх «Сороконожка», «Диктатор» участники часто не используют профиль стратегий, составляющий равновесие по Нэшу. Продолжаются споры о значении подобных экспериментов. Согласно другой точке зрения, равновесие по Нэшу не является предсказанием ожидаемого поведения, но лишь объясняет, почему популяции, уже находящиеся в равновесии по Нэшу, остаются в этом состоянии. Однако вопрос о том, как эти популяции приходят к равновесию Нэша, остается открытым. Некоторые исследователи в поисках ответа на этот вопрос переключились на изучение эволюционной теории игр. Модели эволюционной теории игр предполагают ограниченную рациональность или нерациональность игроков. Несмотря на название, эволюционная теория игр занимается не только и не столько вопросами естественного отбора биологических видов. Этот раздел теории игр изучает модели биологической и культурной эволюции, а также модели процесса обучения.

Нормативный анализ (выявление наилучшего поведения).

С другой стороны, многие исследователи рассматривают теорию игр не как инструмент предсказания поведения, но как инструмент анализа ситуаций с целью выявления наилучшего поведения для рационального игрока. Поскольку равновесие Нэша включает стратегии, являющиеся наилучшим откликом на поведение другого игрока, использование концепции равновесия Нэша для выбора поведения выглядит вполне обоснованным. Однако, и такое использование теоретико-игровых моделей подверглось критике. Во-первых, в некоторых случаях игроку выгодно выбрать стратегию, не входящую в равновесие, если он ожидает, что другие игроки также не будут следовать равновесным стратегиям. Во-вторых, знаменитая игра «Дилемма заключенного » позволяет привести ещё один контрпример. В «Дилемме заключенного » следование личным интересам приводит к тому, что оба игрока оказываются в худшей ситуации в сравнении с той, в которой они пожертвовали бы личными интересами.

Типы игр

Кооперативные и некооперативные.

Игра называется кооперативной, или коалиционной , если игроки могут объединяться в группы, взяв на себя некоторые обязательства перед другими игроками и координируя свои действия. Этим она отличается от некооперативных игр, в которых каждый обязан играть за себя. Развлекательные игры редко являются кооперативными, однако такие механизмы нередки в повседневной жизни.

Часто предполагают, что кооперативные игры отличаются именно возможностью общения игроков друг с другом. В общем случае это неверно. Существуют игры, где коммуникация разрешена, но игроки преследуют личные цели, и наоборот.

Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом. Попытки объединить два подхода дали немалые результаты. Так называемая программа Нэша уже нашла решения некоторых кооперативных игр как ситуации равновесия некооперативных игр.

Гибридные игры включают в себя элементы кооперативных и некооперативных игр. Например, игроки могут образовывать группы, но игра будет вестись в некооперативном стиле. Это значит, что каждый игрок будет преследовать интересы своей группы, вместе с тем стараясь достичь личной выгоды.

Симметричные и несимметричные.

Игра будет симметричной тогда, когда соответствующие стратегии у игроков будут равны, то есть иметь одинаковые платежи. Иначе говоря, если игроки могут поменяться местами и при этом их выигрыши за одни и те же ходы не изменятся. Многие изучаемые игры для двух игроков - симметричные. В частности, таковыми являются: «Дилемма заключённого», «Охота на оленя », «Ястребы и голуби». В качестве несимметричных игр можно привести «Ультиматум » или «Диктатор ».

В примере справа игра на первый взгляд может показаться симметричной из-за похожих стратегий, но это не так - ведь выигрыш второго игрока при профилях стратегий (А, А) и (Б, Б) будет больше, чем у первого.

С нулевой суммой и с ненулевой суммой.

Игры с нулевой суммой - особая разновидность игр с постоянной суммой , то есть таких, где игроки не могут увеличить или уменьшить имеющиеся ресурсы, или фонд игры. В этом случае сумма всех выигрышей равна сумме всех проигрышей при любом ходе. Посмотрите направо - числа означают платежи игрокам - и их сумма в каждой клетке равна нулю. Примерами таких игр может служить покер, где один выигрывает все ставки других; реверси, где захватываются фишки противника; либо банальное воровство .

Многие изучаемые математиками игры, в том числе уже упоминавшаяся «Дилемма заключённого», иного рода: в играх с ненулевой суммой выигрыш какого-то игрока не обязательно означает проигрыш другого, и наоборот. Исход такой игры может быть меньше или больше нуля. Такие игры могут быть преобразованы к нулевой сумме - это делается введением фиктивного игрока , который «присваивает себе» излишек или восполняет недостаток средств.

Ещё игрой с отличной от нуля суммой является торговля , где каждый участник извлекает выгоду. Широко известным примером, где она уменьшается, является война .

Параллельные и последовательные.

В параллельных играх игроки ходят одновременно, или, по крайней мере, они не осведомлены о выборе других до тех пор, пока все не сделают свой ход. В последовательных, или динамических , играх участники могут делать ходы в заранее установленном либо случайном порядке, но при этом они получают некоторую информацию о предшествующих действиях других. Эта информация может быть даже не совсем полной , например, игрок может узнать, что его противник из десяти своих стратегий точно не выбрал пятую, ничего не узнав о других.

Различия в представлении параллельных и последовательных игр рассматривались выше. Первые обычно представляют в нормальной форме, а вторые - в экстенсивной.

С полной или неполной информацией.

Важное подмножество последовательных игр составляют игры с полной информацией. В такой игре участники знают все ходы, сделанные до текущего момента, равно как и возможные стратегии противников, что позволяет им в некоторой степени предсказать последующее развитие игры. Полная информация не доступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство изучаемых в математике игр - с неполной информацией. Например, вся «соль» Дилеммы заключённого или Сравнения монеток заключается в их неполноте.

В то же время есть интересные примеры игр с полной информацией: «Ультиматум», «Многоножка ». Сюда же относятся шахматы, шашки, го, манкала и другие.

Часто понятие полной информации путают с похожим - совершенной информации . Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно.

Игры с бесконечным числом шагов.

Игры в реальном мире или изучаемые в экономике игры, как правило, длятся конечное число ходов. Математика не так ограничена, и в частности, в теории множеств рассматриваются игры, способные продолжаться бесконечно долго. Причём победитель и его выигрыш не определены до окончания всех ходов.

Задача, которая обычно ставится в этом случае, состоит не в поиске оптимального решения, а в поиске хотя бы выигрышной стратегии . Используя аксиому выбора, можно доказать, что иногда даже для игр с полной информацией и двумя исходами - «выиграл» или «проиграл» - ни один из игроков не имеет такой стратегии. Существование выигрышных стратегий для некоторых особенным образом сконструированных игр имеет важную роль в дескриптивной теории множеств .

Дискретные и непрерывные игры.

Большинство изучаемых игр дискретны : в них конечное число игроков, ходов, событий, исходов и т. п. Однако эти составляющие могут быть расширены на множество вещественных чисел. Игры, включающие такие элементы, часто называются дифференциальными. Они связаны с какой-то вещественной шкалой (обычно - шкалой времени), хотя происходящие в них события могут быть дискретными по природе. Дифференциальные игры также рассматриваются в теории оптимизации, находят своё применение в технике и технологиях, физике.

Метаигры.

Это игры, результатом которых является набор правил для другой игры (называемой целевой или игрой-объектом ). Цель метаигр - увеличить полезность выдаваемого набора правил. Теория метаигр связана с теорией оптимальных механизмов .

по материалам wikipedia.org

Для человека, не являющегося экспертом в политике, Брюс Буэно де Мескита из Университета Нью-Йорка делает удивительно точные событий. Ему удалось с точностью до нескольких месяцев предсказать уход со своих постов и Переверза Мушарафа. Он точно назвал приемника Аятоллы Хомейни на посту лидера Ирана за 5 лет до его смерти. На вопрос о том, в чем секрет, он отвечает, что ответа не знает - его знает игра. Под игрой здесь имеется в виду математический метод, который изначально был создан для формирования и анализа стратегий различных игр, а именно - теория игр. В экономике она используется наиболее часто. Хотя изначально она была разроботана для построения и анализа стратегий в играх, использующихся для развлечений.

Теория игры - это численный аппарат, позволяющий рассчитать сценарий, или, точнее, вероятность различных сценариев поведения системы или "игры", контролируемой различными факторами. Эти факторы, в свою очередь, определяются некоторым числом "игроков".

Таким образом, теория игр, в экономике получившая главный толчок к развитию, может применятся в самых разных областях человеческой деятельности. Пока рано говорить о том, чтобы эти программы применялись для разрешения военных конфлмктов, но в будущем это вполне реально.

Из популярного американского блога Cracked.

Теория игр занимается тем, что изучает способы сделать лучший ход и в результате получить как можно больший кусок выигрышного пирога, оттяпав часть его у других игроков. Она учит подвергать анализу множество факторов и делать логически взвешенные выводы. Я считаю, её нужно изучать после цифр и до алфавита. Просто потому что слишком многие люди принимают важные решения, основываясь на интуиции, тайных пророчествах, расположении звёзд и других подобных. Я тщательно изучил теорию игр, и теперь хочу рассказать вам о её основах. Возможно, это добавит здравого смысла в вашу жизнь.

1. Дилемма заключенного

Берто и Роберт были арестованы за ограбление банка, не сумев правильно использовать для побега угнанный автомобиль. Полиция не может доказать, что именно они ограбили банк, но поймала их с поличным в украденном автомобиле. Их развели по разным комнатам и каждому предложили сделку: сдать сообщника и отправить его за решетку на 10 лет, а самому выйти на свободу. Но если они оба сдадут друг друга, то каждый получит по 7 лет. Если же никто ничего не скажет, то оба сядут на 2 года только за угон автомобиля.

Получается, что, если Берто молчит, но Роберт сдает его, Берто садится в тюрьму на 10 лет, а Роберт выходит на свободу.

Каждый заключенный - игрок, и выгода каждого может быть представлена в виде «формулы» (что получат они оба, что получит другой). Например, если я ударю тебя, моя выигрышная схема будет выглядеть так (я получаю грубую победу, ты страдаешь от сильной боли). Поскольку у каждого заключенного есть два варианта, мы можем представить результаты в таблице.

Практическое применение: Выявление социопатов

Здесь мы видим основное применение теории игр: выявление социопатов, думающих лишь о себе. Настоящая теория игр - это мощный аналитический инструмент, а дилетантство часто служит красным флагом, с головой выдающим человека, лишенного понятия чести. Люди, делающие расчеты интуитивно, считают, что лучше поступить некрасиво, потому что это приведет к более короткому тюремному сроку независимо от того, как поступит другой игрок. Технически это правильно, но только если вы недальновидный человек, ставящий цифры выше человеческих жизней. Именно поэтому теория игра так популярна в сфере финансов.

Настоящая проблема дилеммы заключенного в том, что она игнорирует данные. Например, в ней не рассматривается возможность вашей встречи с друзьями, родственниками, или даже кредиторами человека, которого вы посадили в тюрьму на 10 лет.

Хуже всего то, что все участники дилеммы заключенного действуют так, как будто никогда не слышали ней.

А лучший ход - хранить молчание, и через два года вместе с хорошим другом пользоваться общими деньгами.

2. Доминирующая стратегия

Это ситуация, при которой ваши действия дают наибольший выигрыш, независимо от действий оппонента. Что бы ни происходило - вы всё сделали правильно. Вот почему многие люди при «дилемме заключенного» считают: предательство приводит к «наилучшему» результату независимо от того, что делает другой человек, а игнорирование действительности, свойственное этому методу, заставляет всё выглядеть супер-просто.

Большинство игр, в которые мы играем, не имеет строго доминирующих стратегий, потому что иначе они были бы просто ужасны. Представьте, что вы всегда делали бы одно и то же. В игре «камень-ножницы-бумага» нет никакой доминирующей стратегии. Но если бы вы играли с человеком, у которого на руках надеты прихватки, и он мог показать только камень или бумагу, у вас была бы доминирующая стратегия: бумага. Ваша бумага обернет его камень или приведет к ничьей, и вы не сможете проиграть, потому что соперник не может показать ножницы. Теперь, когда у вас есть доминирующая стратегия, нужно быть дураком, чтобы попробовать что-нибудь другое.

3. Битва полов

Игры интереснее, когда у них нет строго доминирующей стратегии. Например, битва полов. Анджали и Борислав идут на свидание, но не могут выбрать между балетом и боксом. Анджали любит бокс, потому что ей нравится, когда льется кровь на радость орущей толпе зрителей, считающих себя цивилизованными только потому, что они заплатили за чьи-то разбитые головы.

Борислав хочет смотреть балет, потому что он понимает, что балерины проходят через огромное количество травм и сложнейших тренировок, зная, что одна травма может положить конец всему. Артисты балета - величайшие спортсмены на Земле. Балерина может ударить вас ногой в голову, но никогда этого не сделает, потому что ее нога стоит гораздо дороже вашего лица.

Каждый из них хочет пойти на своё любимое мероприятие, но они не хотят наслаждаться им в одиночестве, таким образом, получаем схему их выигрыша: наибольшее значение - делать то, что им нравится, наименьшее значение - просто быть с другим человеком, и ноль - быть в одиночестве.

Некоторые люди предлагают упрямо балансировать на грани войны: если вы, несмотря ни на что, делаете то, что хотите, другой человек должен подстроиться под ваш выбор или потерять все. Как я уже говорил, упрощённая теория игр отлично выявляет глупцов.

Практическое применение: Избегайте острых углов

Конечно, и у этой стратегии есть свои значительные недостатки. Прежде всего, если вы относитесь к вашим свиданиям как к «битве полов», она не сработает. Расстаньтесь, чтобы каждый из вас мог найти человека, который ему понравится. А вторая проблема заключается в том, что в этой ситуации участники настолько не уверены в себе, что не могут этого сделать.

По-настоящему выигрышная стратегия для каждого - делать то, что они хотят, а после, или на следующий день, когда они будут свободны, пойти вместе в кафе. Или же чередовать бокс и балет, пока в мире развлечений не произойдет революция и не будет изобретен боксерский балет.

4. Равновесие Нэша

Равновесие Нэша - это набор ходов, где никто не хочет сделать что-то по-другому после свершившегося факта. И если мы сможем заставить это работать, теория игр заменит всю философскую, религиозную, и финансовую систему на планете, потому что «желание не прогореть» стало для человечества более мощной движущей силой, чем огонь.

Давайте быстро поделим 100$. Вы и я решаем, сколько из сотни мы требуем и одновременно озвучиваем суммы. Если наша общая сумма меньше ста, каждый получает то, что хотел. Если общее количество больше ста, тот, кто попросил наименьшее количество, получает желаемую сумму, а более жадный человек получает то, что осталось. Если мы просим одинаковую сумму, каждый получает 50 $. Сколько вы попросите? Как вы разделите деньги? Существует единственный выигрышный ход.

Требование 51 $ даст вам максимальную сумму независимо от того, что выберет ваш противник. Если он попросит больше, вы получите 51 $. Если он попросит 50 $ или 51 $, вы получите 50 $. И если он попросит меньше 50 $, вы получите 51 $. В любом случае нет никакого другого варианта, который принесет вам больше денег, чем этот. Равновесие Нэша - ситуация, в которой мы оба выбираем 51 $.

Практическое применение: сначала думайте

В этом вся суть теории игр. Не обязательно выиграть и тем более навредить другим игрокам, но обязательно сделать лучший для себя ход, независимо от того, что подготовят для вас окружающие. И даже лучше, если этот ход будет выгоден и для других игроков. Это своего рода математика, которая могла бы изменить общество.

Интересный вариант этой идеи - распитие спиртного, которое можно назвать Равновесием Нэша с временной зависимостью. Когда вы достаточно много пьете, то не заботитесь о поступках других людей независимо от того, что они делают, но на следующий день вы очень жалеете, что не поступили иначе.

5. Игра в орлянку

В орлянке участвуют Игрок 1 и Игрок 2. Каждый игрок одновременно выбирает орла или решку. Если они угадывают, Игрок 1 получает пенс Игрока 2. Если же нет - Игрок 2 получает монету Игрока 1.

Выигрышная матрица проста…

…оптимальная стратегия: играйте полностью наугад. Это сложнее, чем вы думаете, потому что выбор должен быть абсолютно случайным. Если у вас есть предпочтения орла или решки, противник может использовать его, чтобы забрать ваши деньги.

Конечно, настоящая проблема здесь заключается в том, что было бы намного лучше, если бы они просто бросали один пенс друг в друга. В результате их прибыль была бы такой же, а полученная травма могла бы помочь этим несчастным людям почувствовать что-то, кроме ужасной скуки. Ведь это худшая игра из существующих когда-либо. И это идеальная модель для серии пенальти.

Практическое применение: Пенальти

В футболе, хоккее и многих других играх, дополнительное время - это серия пенальти. И они были бы интереснее, если бы строились на том, сколько раз игроки в полной форме смогут сделать «колесо», потому что это, по крайней мере, было бы показателем их физических способностей и на это было бы забавно посмотреть. Вратари не могут чётко определить движение мяча или шайбы в самом начале их движения, потому что, к огромному сожалению, в наших спортивных состязаниях роботы все еще не участвуют. Вратарь должен выбрать левое или правое направление и надеяться, что его выбор совпадет с выбором противника, бьющего по воротам. В этом есть что-то общее с игрой в монетку.

Однако обратите внимание, что это не идеальный пример сходства с игрой в орла и решку, потому что даже при правильном выборе направления вратарь может не поймать мяч, а нападающий может не попасть по воротам.

Итак, каково же наше заключение согласно теории игр? Игры с мячом должны заканчиваться способом «мультимяча», где каждую минуту игрокам один на один выводится дополнительный мяч/шайба, до получения одной из сторон определенного результата, который был показателем настоящего мастерства игроков, а не эффектным случайным совпадением.

В конце концов, теория игр должна использоваться для того, чтобы сделать игру умнее. А значит лучше.

Теория игр - совокупность математических методов решения конфликтных ситуаций (столкновений интересов). В теории игр игрой называется математическая модель конфликтной ситуации. Предмет особого интереса теории игр - исследование стратегий принятия решений участников игры в условиях неопределённости. Неопределённость связана с тем, что две или более стороны преследуют противоположные цели, а результаты любого действия каждой из сторон зависят от ходов партнёра. При этом каждая из сторон стремится принимать оптимальные решения, которые реализуют поставленные цели в наибольшей степени.

Наиболее последовательно теория игр применяется в экономике, где конфликтные ситуации возникают, например, в отношениях между поставщиком и потребителем, покупателем и продавцом, банком и клиентом. Применение теории игр можно найти и в политике, социологии, биологии, военном искусстве.

Из истории теории игр

История теории игр как самостоятельной дисциплины начинается в 1944 году, когда Джон фон Нейман и Оскар Моргенштерн опубликовали книгу "Теория игр и экономическое поведение" ("Theory of Games and Economic Behavior"). Хотя примеры теории игр встречались и раньше: трактат Вавилонского Талмуда о разделе имущества умершего мужа между его жёнами, карточные игры в 18-м веке, развитие теории шахматной игры в начале 20-го века, доказательство теоремы о минимаксе того же Джона фон Неймана в 1928 году, без которой не было бы никакой теории игр.

В 50-х годах 20-го века Мелвин Дрешер и Мерил Флод из Rand Corporation первыми экспериментально применили дилемму заключённого, Джон Нэш в работах о состоянии равновесия в играх двух лиц развил понятие равновесия Нэша.

Рейнхард Сэлтен в 1965 году опубликовал книгу "Обработка олигополии в теории игр по требованию" ("Spieltheoretische Behandlung eines Oligomodells mit Nachfrageträgheit"), с которой применение теории игр в экономике получило новую движущую силу. Шагом вперёд в эволюции теории игр связан с работой Джона Мейнарда Смита "Эволюционно стабильная стратегия" ("Evolutionary Stable Strategy", 1974). Дилемма заключённого была популяризована в книге Роберта Аксельрода "Эволюция кооперации" ("The Evolution of Cooperation"), опубликованной в 1984 году. В 1994 году именно за вклад в теорию игр Нобелевской премии были удостоены Джон Нэш, Джон Харсаньи и Рейнхард Сэлтен.

Теория игр в жизни и бизнесе

Остановимся подробнее на сути кофликтной ситуации (столкновении интересов) в том смысле, как он понимается в теории игр для дальнейшего моделирования различных ситуаций в жизни и бизнесе. Пусть индивидуум находится в таком положении, которое приводит к одному из нескольких возможных исходов, причём у индивидуума имеются по отношению к этим исходам некоторые личные предпочтения. Но хотя он может до некоторой степени управлять переменными факторами, определяющими исход, он не имеет полной власти над ними. Иногда управление находится в руках нескольких индивидуумов, которые, подобно ему, имеют какие-то предпочтения по отношению к возможным исходам, но в общем случае интересы этих индивидуумов не согласуются. В других случаях конечный исход может зависеть как от случайностей (которые в юридических науках иногда именуются стихийными бедствиями), так и от других индивидуумов. Теория игр систематизирует наблюдения за такими ситуациями и формулировки общих принципов для руководства разумными действиями в таких ситуациях.

В некоторых отношениях название "теория игр" неудачно, так как наводит на мысль, что теория игр рассматривает лишь не имеющие социального значения столкновения, происходящие в салонных играх, но всё же эта теория имеет значительно более широкое значение.

О применении теории игр может дать представление следующая экономическая ситуация. Пусть имеется несколько предпринимателей, каждый из которых стремится получить максимум прибыли, имея при этом лишь ограниченную власть над переменными, определяющими эту прибыль. Предприниматель не имеет власти над переменными, которыми распоряжается другой предприниматель, но которые могут сильно влиять на доход первого. Трактовка этой ситуации как игры может вызвать следующее возражение. В игровой модели предполагается, что каждый предприниматель делает один выбор из области возможных выборов и этими единичными выборами определяются прибыли. Очевидно, что этого почти не может быть в действительности, так как при этом в промышленности не были бы нужны сложные управленческие аппараты. Просто есть ряд решений и модификаций этих решений, которые зависят от выборов, совершённых другими участниками экономической системы (игроками). Но в принципе можно вообразить, что какой-либо администратор предвидит все возможные случайности и подробно описывает действие, которое нужно предпринимать в каждом случае, вместо того чтобы решать каждую задачу по мере её возникновения.

Военный кофликт, по определению, есть столкновение интересов, в котором ни одна из сторон не распоряжается полностью переменными, определяющими исход, который решается рядом битв. Можно просто считать исход выигрышем или проигрышем и приписать им численные значения 1 и 0.

Одна из самых простых конфликтных ситуаций, которая может быть записана и решена в теории игр - дуэль, представляющая собой конфликт двух игроков 1 и 2, имеющих соответственно p и q выстрелов. Для каждого игрока существует функция, указывающая вероятность того, что выстрел игрока i в момент времени t даст попадание, которое окажется смертельным.

В итоге теория игр приходит к такой формулировке некоторого класса столкновений интересов: имеются n игроков, и каждому нужно выбрать одну возможность из стого определённого набора, причём при совершении выбора у игрока нет никаких сведений о выборах других игроков. Область возможных выборов игрока может содержать такие элементы, как "ход тузом пик", "производство танков вместо автомобилей", или в общем смысле, стратегию, определяющую все действия, которые нужно совершить во всех возможных обстоятельствах. Перед каждым игроком стоит задача: какой выбор он должен сделать, чтобы его частное влияние на исход принесло ему как можно больший выигрыш?

Математическая модель в теории игр и формализация задач

Как мы уже отмечали, игра является математической моделью конфликтной ситуации и требует наличия следующих компонент:

  1. заинтересованных сторон;
  2. возможных действий с каждой стороны;
  3. интересов сторон.

Заинтересованные в игре стороны называются игроками , каждый из них может предпринять не менее двух действий (если в распоряжении игрока только одно действие, то он фактически не участвует в игре, так как заранее известно, что он предпримет). Исход игры называется выигрышем .

Реальная конфликтная ситуация не всегда, а игра (в понятии теории игр) - всегда - протекает по определённым правилам , которые точно определяют:

  1. варианты действий игроков;
  2. объём информации каждого игрока о поведении партнёра;
  3. выигрыш, к которому приводит каждая совокупность действий.

Примерами формализованных игр могут служить футбол, карточная игра, шахматы.

Но в экономике модель поведения игроков возникает, например, когда несколько фирм стремятся занять более выгодное место на рынке, несколько лиц пытаются поделить между собой какое-либо благо (ресурсы, финансы) так, чтобы каждому досталось по возможности больше. Игроками в конфликтных ситуациях в экономике, которые можно моделировать в виде игры, являются фирмы, банки, отдельные люди и другие экономические агенты. В свою очередь в условиях войны модель игры используется, например, в выборе более лучшего оружия (из имеющегося или потенциально возможного) для разгрома противника или защиты от нападения.

Для игры характерна неопределённость результата . Причины неопределённости можно распределить по следующим группам:

  1. комбинаторные (как в шахматах);
  2. влияние случайных факторов (как в игре "орёл или решка", кости, карточные игры);
  3. стратегические (игрок не знает, какое действие предпримет противник).

Стратегией игрока называется совокупность правил, определяющих его действия при каждом ходе в зависимости от сложившейся ситуации.

Целью теории игр является определение оптимальной стратегии для каждого игрока. Определить такую стратегию - значит решить игру. Оптимальность стратегии достигается, когда один из игроков должен получить максимальный выигрыш, при том, что второй придерживается своей стратегии. А второй игрок должен иметь минимальный проигрыш, если первый придерживается своей стратегии.

Классификация игр

  1. Классификация по числу игроков (игра двух и более лиц). Игры двух лиц занимают центральное место во всей теории игр. Основным понятием теории игр для игры двух лиц является обобщение весьма существенной идеи равновесия, которая естественно появляется в играх двух лиц. Что же касается игр n лиц, то одна часть теории игр посвящена играм, в которых сотрудничество между игроками запрещено. В другой части теории игр n лиц предполагается, что игроки могут сотрудничать для взаимной пользы (см. далее в этом параграфе о некооперативных и кооперативных играх).
  2. Классификация по числу игроков и их стратегиям (число стратегий не менее двух, может быть бесконечностью).
  3. Классификация по количеству информации относительно прошлых ходов: игры с полной информацией и неполной информацией. Пусть есть игрок 1 - покупатель и игрок 2 - продавец. Если у игрока 1 нет полной информации о действиях игрока 2, то игрок 1 может и не различить две альтернативы, между которыми ему предстоит сделать выбор. Например, выбирая между двумя видами некоторого товара и не зная о том, что по некоторым признакам товар A хуже товара B , игрок 1 может не видеть различия между альтернативами.
  4. Классификация по принципам деления выигрыша : кооперативные, коалиционные с одной стороны и некооперативные, бескоалиционные с другой стороны. В некооперативной игре , или иначе - бескоалиционной игре , игроки выбирают стратегии одновременно, не зная, какую стратегию выберет второй игрок. Коммуникация между игроками невозможна. В кооперативной игре , или иначе - коалиционной игре , игроки могут объединяться в коалиции и предпринимать коллективные действия, чтобы увеличить свои выигрыши.
  5. Конечная игра двух лиц с нулевой суммой или антогонистическая игра – это стратегическая игра с полной информацией, в которой участвуют стороны с противоположными интересами. Анатагонистическими играми являются матричные игры .

Классический пример из теории игр - дилемма заключённого

Двух подозреваемых берут под стражу и изолируют друг от друга. Окружной прокурор убеждён, что они совершили тяжкое преступление, но не имеет достаточных доказательств, чтобы предъявить им обвинение на суде. Он говорит каждому из заключённых, что у него имеется две альтернативы: признаться в преступлении, которое по убеждению полиции он совершил, или не признаваться. Если оба не признаются, то окружной прокурор предъявит им обвинение в каком-либо незначительном преступлении, например, мелкая кража или незаконное владение оружием, и они оба получат небольшое наказание. Если они оба признаются, то будут подлежать судебной ответственности, но он не потребует самого строгого приговора. Если же один признается, а другой нет, то признавшемуся приговор будет смягчён за выдачу сообщника, в то время как упорствующий получит "на полную катушку".

Если эту стратегическую задачу сформулировать в сроках заключения, то она сводится к следующему:

Таким образом, если оба заключённых не признаются, они получат по 1 году каждый. Если оба признаются, то каждый получит по 8 лет. А если один признается, другой не признается, то тот, который признался отделается тремя месяцами заключения, а тот, который не признается, получит 10 лет. Приведённая выше матрица правильно отражает дилемму заключённого: перед каждым стоит вопрос - признаться или не признаться. Игра, которую окружной прокурор предлагает заключённым, представляет собой некооперативную игру или иначе - бескоалиционную игру . Если бы оба заключённых имели возможность сотрудничать (то есть игра была бы кооперативной или иначе коалиционной игрой ), то оба не признались бы и получили по году тюрьмы каждый.

Примеры использования математических средств теории игр

Переходим теперь к рассмотрению решений примеров распространённых классов игр, для которых в теории игр существуют методы исследования и решения.

Пример формализации некооперативной (бескоалиционной) игры двух лиц

В предыдущем параграфе мы уже рассмотрели пример некооперативной (бескоалиционной) игры (дилемма заключённого). Давайте закрепим наши навыки. Для этого подойдёт также классический сюжет, навеянный "Приключениями Шерлока Холмса" Артура Конан Дойля. Можно, конечно, возразить: пример не из жизни, а из литературы, но ведь Конан Дойль не зарекомендовал себя как писатель-фантаст! Классический ещё и потому, что задание выполнено Оскаром Моргенштерном, как мы уже установили - одним из основателей теории игр.

Пример 1. Будет приведено сокращённое изложение фрагмента одного из "Приключений Шерлока Холмса". Согласно известным понятиям теории игр составить модель конфликтной ситуации и формально записать игру.

Шерлок Холмс намерен отправиться из Лондона в Дувр с дальнейшей целю попасть на континент (европейский), чтобы спастись от профессора Мориарти, который преследует его. Сев в поезд, он увидел на вокзальной платформе профессора Мориарти. Шерлок Холмс допускает, что Мориарти может выбрать особый поезд и обогнать его. У Шерлока Холмса две альтернативы: продолжать поездку до Дувра или сойти на станции Кентерберри, являющейся единственной промежуточной станцией на его маршруте. Мы принимаем, что его противник достаточно разумен, чтобы определить возможности Холмса, поэтому перед ним те же две альтернативы. Оба противника должны выбрать станцию, чтобы сойти на ней с поезда, не зная, какое решение примет каждый из них. Если в результате принятия решения оба окажутся на одной и той же станции, то можно однозначно считать, что Шерлок Холмс будет убит профессором Мориарти. Если же Шерлок Холмс благополучно доберётся до Дувра, то он будет спасён.

Решение. Героев Конан Дойля можем рассматривать как участников игры, то есть игроков. В распоряжении каждого игрока i (i =1,2) две чистые стратегии:

  • сойти в Дувре (стратегия s i1 (i =1,2) );
  • сойти на промежуточной станции (стратегия s i2 (i =1,2) )

В зависимости от того, какую из двух стратегий выберет каждый из двух игроков, будет создана особая комбинация стратегий как пара s = (s 1 , s 2 ) .

Каждой комбинации можно поставить в соответствие событие - исход попытки убийства Шерлока Холмса профессором Мориарти. Составляем матрицу данной игры с возможными событиями.

Под каждым из событий указан индекс, означающий приобретение профессора Мориарти, и рассчитываемый в зависимости от спасения Холмса. Оба героя выбирают стратегию одновременно, не зная, что выберет противник. Таким образом, игра является некооперативной, поскольку, во-первых, игроки находятся в разных поездах, а во-вторых, имеют противоположные интересы.

Пример формализации и решения кооперативной (коалиционной) игры n лиц

В этом пункте практическая часть, то есть ход решения примера задачи, будет предварена теоретической частью, в которой будем знакомиться с понятиями теории игр для решения кооперативных (бескоалиционных) игр. Для этой задачи теория игр предлагает:

  • характеристическую функцию (если говорить упрощённо, она отражает величину выгоды объединения игроков в коалицию);
  • понятие аддитивности (свойства величин, состоящее в том, что значение величины, соответствующее целому объекту, равно сумме значений величин, соответствующих его частям, в некотором классе разбиений объекта на части) и супераддитивности (значение величины, соответствующее целому объекту, больше суммы значений величин, соответствующих его частям) характеристической функции.

Супераддитивность характеристической функции говорит о том, что объединение в коалиции выгодна игрокам, так как в этом случае величина выигрыша коалиции увеличивается с увеличением числа игроков.

Для формализации игры нам нужно ввести формальные обозначения вышеназванных понятий.

Для игры n обозначим множество всех её игроков как N = {1,2,...,n} Любое непустое подмножество множества N обозначим как Т (включая само N и все подмножества, состоящие из одного элемента). На сайте есть занятие "Множества и операции над множествами ", которое при переходе по ссылке открывается в новом окне.

Характеристическая функция обозначается как v и область её определения состоит из возможных подмножеств множества N . v (T ) - значение характеристической функции для того или иного подмножества, например, доход, полученный коалицией, в том числе, возможно, состоящей из одного игрока. Это важно по той причине, что теория игр требует проверить наличие супераддитивности для значений характеристической функции всех непересекающихся коалиций.

Для двух непустых коалиций из подмножеств T 1 и T 2 аддитивность характеристической функции кооперативной (коалиционной) игры записывается так:

А супераддитивность так:

Пример 2. Трое студентов музыкальной школы подрабатывают в разных клубах, свою выручку они получают от посетителей клубов. Установить, выгодно ли им объединять свои силы (если да, то с какими условиями), используя понятия теории игр для решения кооперативных игр n лиц, при следующих исходных данных.

В среднем их выручка за один вечер составляла:

  • у скрипача 600 единиц;
  • у гитариста 700 единиц;
  • у певицы 900 единиц.

Пытаясь увеличить выручку, студенты в течение нескольких месяцев создавали различные группы. Результаты показали, что, объединившись, они могут увеличить свою выручку за вечер следующим образом:

  • скрипач + гитарист зарабатывали 1500 единиц;
  • скрипач + певица зарабатывали 1800 единиц;
  • гитарист + певица зарабатывали 1900 единиц;
  • скрипач + гитарист + певица зарабатывали 3000 единиц.

Решение. В этом примере число участников игры n = 3 , следовательно, область определения характеристической функции игры состоит из 2³ = 8 возможных подмножеств множества всех игроков. Перечислим все возможные коалиции T :

  • коалиции из одного элемента, каждая из которых состоит из одного игрока - музыканта: T {1} , T {2} , T {3} ;
  • коалиции из двух элементов: T {1,2} , T {1,3} , T {2,3} ;
  • коалиция из трёх элементов: T {1,2,3} .

Каждому из игроков присвоим порядковый номер:

  • скрипач - 1-й игрок;
  • гитарист - 2-й игрок;
  • певица - 3-й игрок.

По данным задачи определим характеристическую функцию игры v :

v(T{1}) = 600 ; v(T{2}) = 700 ; v(T{3}) = 900 ; эти значения характеристической функции определены исходя из выигрышей соответственно первого, второго и третьего игроков, когда они не объединяются в коалиции;

v(T{1,2}) = 1500 ; v(T{1,3}) = 1800 ; v(T{2,3}) = 1900 ; эти значения характеристической функции определены по выручке каждой пары игроков, объединившихся в коалиции;

v(T{1,2,3}) = 3000 ; это значение характеристической функции определено по средней выручке в случае, когда игроки объединялись в тройки.

Таким образом, мы перечислили все возможные коалиции игроков, их получилось восемь, как и должно быть, так как область определения характеристической функции игры состоит именно из восьми возможных подмножеств множества всех игроков. Что и требует теория игр, так как нам нужно проверить наличие супераддитивности для значений характеристической функции всех непересекающихся коалиций.

Как выполняются условия супераддитивности в этом примере? Определим, как игроки образуют непересекающиеся коалиции T 1 и T 2 . Если часть игроков входят в коалицию T 1 , то все остальные игроки входят в коалицию T 2 и по определению эта коалиция образуется как разность всего множества игроков и множества T 1 . Тогда, если T 1 - коалиция из одного игрока, то в коалиции T 2 будут второй и третий игроки, если в коалиции T 1 будут первый и третий игроки, то коалиция T 2 будет состоять только из второго игрока, и так далее.



Рассказать друзьям