Расчёт критических, теплофизических свойств и молекулярной массы веществ, Учебно-методическое пособие. Критическая плотность вещества во вселенной

💖 Нравится? Поделись с друзьями ссылкой

КРИТИЧЕСКАЯ ПЛОТНОСТЬ ВСЕЛЕННОЙ - значение плотности вещества во Вселенной ,определяемое выражением где Н - постоянная Хаббла (см. Хаббла закон), G - постоянная тяготения Ньютона. В однородных изотропных моделях Вселенной (см. Космологические модели )с равной нулю космологической постоянной величина r с является критич. значением , отделяющим модель замкнутой Вселенной где r - реальная ср. плотность всех видов материи) от модели открытой Вселенной

В случае тяготение материи достаточно велико, оно сильно замедляет расширение Вселенной, и в будущем её расширение должно смениться сжатием. Трёхмерное пространство в рассматриваемых моделях при имеет положит. кривизну, замкнуто, объём его конечен.

При тяготение недостаточно для того, чтобы остановить расширение, и Вселенная в этих условиях неограниченно расширяется в будущем. Трёхмерное пространство в рассматриваемых моделях имеет отрицат. кривизну, объём его бесконечен (в простейшей топологии).

Постоянная Хаббла H известна из астрономич. наблюдений со значит. неопределённостью: Н - (50-100) км/(с*Мпк). Отсюда возникает неопределённость в значении К. п. В. r c = (5*10 -30 -2*10 -29) г/см 3 . С др. стороны, наблюдения показывают, что усреднённая плотность вещества входящего в состав галактик, по-видимому, существенно меньше К. п. В. Однако, возможно, во Вселенной имеются труднонаблюдаемые формы материи, т. н. скрытые массы. Кол-во

В 20-х гг. XX столетия выдаю-щийся советский физик А. А. Фридман установил, что из урав-нений общей теории относительности следует, что Вселенная не может быть неизмен-ной, она должна эволюционировать. Наш мир должен сжи-маться или расширяться. С точки зрения наблюдателя (неза-висимо от того, в какой точке он находится: ведь мир одно-роден и в каждой точке все происходит так же, как и во всех остальных), все далёкие объекты удаляются от него (или при-ближаются к нему) с тем большей скоростью, чем дальше они расположены. При этом изменяется средняя плотность ве-щества во Вселенной. В наблюдениях расширение Вселенной проявляется в том, что в спектрах далёких галактик ли-нии поглощения смещаются в красную сторону спектра. Это называется красным смещением.

Красное смещение легко снимает фотометрический пара-докс. Ведь при переходе ко все более и более удалённым объ-ектам яркость звезды уменьшается ещё и потому, что из-за красного смещения уменьшается энергия кванта. Когда ско-рость удаления приближается к скорости света, звезда стано-вится невидимой.

В теории Фридмана появляется величина, называемая кри-тической плотностью; она может быть выражена через посто-янную Хаббла:

ρ к = 3H 2 / 8πG ,

где H — постоянная Хаббла; G — гравитационная постоян-ная.

Пространство-время

Общая теория относительности позволяет интерпретировать постоянную Хаббла как величину, обратную промежутку времени, прошедшего с мо-мента возникновения Вселенной :

H = 1 / T .

Действительно, если идти по шкале времени назад, то по-лучается, что примерно 15—20 млрд лет Вселенная имела ну-левые размеры и бесконечную плотность. Такое состояние при-нято называть сингулярностью. Она появляется во всех вари-антах фридмановской модели. Ясно, что здесь лежит предел применимости теории и нужно выходить за рамки этой моде-ли. При достаточно малых временах квантовые эффекты (ОТО чисто классическая теория) становятся определяющими.

Вселенная - это всё существующее. От мельчайших пылинок и атомов до огромных скоплений вещества звездных миров и звездных систем. Поэтому не будет ошибкой сказать, что любая наука, так или иначе, изучает Вселенную, точнее, тем или иные её стороны. Существует научная дисциплина, объектом исследования которой служит сама Вселенная. Это особая отрасль астрономии, так называемая космология.

Космология - учение о Вселенной в целом, включающее в себя теорию всей охваченной астрономическими наблюдениями области как части Вселенной.

С развитием науки, все полнее раскрывающей физические процессы, происходящие в окружающем нас мире, большинство ученых постепенно перешло к материалистическим представлениям о бесконечности Вселенной. Здесь огромное значение имело открытие И. Ньютоном (1643 - 1727) закона всемирного тяготения, опубликованного в 1687 г. Одним из важных следствий этого закона явилось утверждение, что в конечной Вселенной все ее вещество за ограниченный промежуток времени должно стянуться в единую тесную систему, тогда как в бесконечной Вселенной вещество под действием тяготения собирается в некоторых ограниченных объемах (по тогдашним представлениям - в звездах), равномерно заполняющих Вселенную.

Большое значение для развития современных представлений о строении и развитии Вселенной имеет общая теория относительности, созданная А.Эйнштейном (1879 - 1955). Она обобщает теорию тяготения Ньютона на большие массы и скорости движения, сравнимые со скоростью света. Действительно, в галактиках сосредоточена колоссальная масса вещества, а скорости далеких галактик и квазаров сравнимы со скоростью света.

Одним из значительных следствий общей теории относительности является вывод о непрерывном движении вещества во Вселенной - нестационарности Вселенной. Этот вывод был получен в 20-х годах нашего столетия советским математиком А.А.Фридманом (1888 - 1925). Он показал, что в зависимости от средней плотности вещество Вселенная должна либо расширяться, либо сжиматься. При расширении Вселенной скорость разбегания галактик должна быть пропорциональна расстоянию до них - вывод, подтвержденный Хабблом открытием красного смещения в спектрах галактик.

Критическое значение средней плотности вещества, от которой зависит характер его движения,

где G - гравитационная постоянная, а Н=75 км/с*Мпк - постоянная Хаббла. Подставляя нужные значения, получаем, что критическое значение средней плотности вещества P k = 10 -29 г/см 3 .

Если средняя плотность вещества во Вселенной больше критической, то в будущем расширение Вселенной сменится сжатием, а при средней плотности равной или меньшей критической расширение не прекратится. Ясно одно, что со временем расширение привело к значительному уменьшению плотности вещества, и на определенном этапе расширения стали формироваться галактики и звезды.

Из теории Фридмана следует, что возможны различные сценарии эволюции Вселенной: неограниченное расширение, чередование сжатий и расширений и даже тривиальное стационарное состояние. Какой из этих сценариев реализуется - зависит от соотношения между критической и фактической плотностью вещества во Вселенной на каждом этапе эволюции. Для того, чтобы оценить значения этих плотностей, рассмотрим сначала, как астрофизики представляют себе структуру Вселенной.

В настоящее время считается, что материя во Вселенной существует в трех формах: обычное вещество, реликтовое излучение и так называемая «темная» материя. Обычное вещество сосредоточено в основном в звездах, которых только в нашей Галактике насчитывается около ста миллиардов. Размер нашей Галактики составляет 15 килопарсек (1 парсек = 30,8  10 12 км). Предполагается, что во Вселенной существует до миллиарда различных галактик, среднее расстояние между которыми имеет порядок одного мегапарсека. Эти галактики распределены крайне неравномерно, образуя скопления (кластеры). Однако, если рассматривать Вселенную в очень большом масштабе, например, «разбивая» ее на «ячейки» с линейным размером, превышающим 300 мегапарсек, то неравномерность структуры Вселенной уже не будет наблюдаться. Таким образом, в очень больших масштабах Вселенная является однородной и изотропной. Вот для такого равномерного распределения вещества можно рассчитать плотность  в, которая составляет величину  310 -31 г / см 3 .

Эквивалентная реликтовому излучению плотность  р  510 -34 г / см 3 , что много меньше  в и, следовательно, может не приниматься в расчет при подсчете общей плотности материи во Вселенной.

Наблюдая за поведением галактик, ученые предположили, что помимо светящегося, «видимого» вещества самих галактик в пространстве вокруг них существуют, по-видимому, значительные массы вещества, наблюдать которые непосредственно не удается. Эти «скрытые» массы проявляют себя только тяготением, которое сказывается на движении галактик в группах и скоплениях. По этим признакам оценивают и связанную с этой «темной» материей плотность  т, которая, по расчетам, должна быть примерно в ~ 30 раз больше, чем  в. Как будет видно из дальнейшего, именно «темная» материя является, в конечном счете, «ответственной» за тот или иной «сценарий» эволюции Вселенной 1 .

Чтобы убедиться в этом, оценим критическую плотность вещества, начиная с которой «пульсирующий» сценарий эволюции сменяется «монотонным». Такую оценку, хотя и достаточно грубую, можно произвести на основании классической механики, без привлечения общей теории относительности. Из современной астрофизики нам потребуется только закон Хаббла.

Вычислим энергию некоторой галактики, имеющей массу m, которая находится на расстоянии L от «наблюдателя» (рис.9.2). Энергия Е этой галактики складывается из кинетической энергии Т = mv 2 /2 = mH 2 L 2 /2 и потенциальной энергии U = - GMm / L, которая связана с гравитационным взаимодействием галактики m с веществом массы M, находящимся внутри шара радиуса L (можно показать, что вещество, находящееся вне шара, не вносит вклада в потенциальную энергию). Выразив массу M через плотность , М = 4L 3 /3, и учитывая закон Хаббла, запишем выражение для энергии галактики:

Е = Т - G 4/3 m v 2 /H 2 = T (1-G 8/3H 2) . (9. 2)

Галактика m

Наблюдатель

Рис.9.2. К расчету критической плотности вещества Вселенной

Из этого выражения видно, что в зависимости от значения плотности  энергия Е может быть либо положительной (Е  0), либо отрицательной (Е  0). В первом случае рассматриваемая галактика обладает достаточной кинетической энергией, чтобы преодолеть гравитационное притяжение массы М и удалиться на бесконечность. Это соответствует неограниченному монотонному расширению Вселенной (модель «открытой» Вселенной).

Во втором случае (Е < 0) расширение Вселенной в какой-то момент прекратится и сменится сжатием (модель «замкнутой» Вселенной). Критическое значение плотности соответствует условию Е = 0, так что из (9. 2) получаем

 к = 3Н 2 / 8G . (9. 3)

Подставив в это выражение известные значения Н = 15 ((км/с)/10 6 световых лет) и G = 6,6710 -11 м 3 /кг с 2 , получаем значение критической плотности  к  10 -29 г / см 3 . Таким образом, если бы Вселенная состояла только из обычного “видимого” вещества с плотностью  в  3  10 -31 г / см 3 , то ее будущее было бы связано с неограниченным расширением. Однако, как было сказано выше, наличие «темной» материи с плотностью  т   в может привести к пульсирующей эволюции Вселенной, когда период расширения сменяется периодом сжатия (коллапсом) (рис.9.3). Правда, в последнее время ученые все больше приходят к мысли, что плотность всей материи во Вселенной, включая и «темную» энергию, в точности равна критической. Почему это так? На этот вопрос ответа пока нет.

Рис.9.3. Расширение и сжатие Вселенной

Из теории Фридмана следует, что возможны различ­ные сценарии эволюции Вселенной: неограниченное расши­рение, чередование сжатий и расширений и даже тривиаль­ное стационарное состояние. Какой из этих сценариев реа­лизуется, зависит от соотношения между критической и фактической плотностью вещества во Вселенной на каж­дом этапе эволюции. Для того чтобы оценить значения этих плотностей, рассмотрим сначала, как астрофизики пред­ставляют себе структуру Вселенной.

В настоящее время считается, что материя во Вселен­ной существует в трех формах: видимая материя (4%), «темная» материя (23%) и так называемая «темная» энергия (73%), свя­занная с антигравитирующим физическим вакуумом. Обычное вещество сосредоточено в основном в звездах, ко­торых только в нашей Галактике насчитывается около ста миллиардов. Размер нашей Галактики составляет 15 ки­лопарсек (1 парсек = 30,8 10 15 м = 3,3 световых года). Предполагается, что во Вселенной существует до миллиарда различных галак­тик, среднее расстояние между которыми имеет порядок одного мегапарсека. Эти галактики распределены крайне неравномерно, образуя скопления (кластеры). Однако, если рассматривать Вселенную в очень большом масштабе, на­пример «разбивая» ее на «ячейки» с линейным размером, превышающим 300 мегапарсек, то неравномерность струк­туры Вселенной уже не будет наблюдаться. Таким образом, в очень больших масштабах Вселенная является однород­ной и изотропной. Вот для такого равномерного распреде­ления видимого вещества можно рассчитать плотность р в, которая составляет величину примерно 3 × 10 -28 кг/м 3 .

Оценка плотности «темной» материи и «темной» энер­гии р т дает значение, примерно в 100 раз больше, чем р в. Как будет видно из дальнейшего, именно эта плотность является, в конечном счете, «ответственной» за тот или иной «сценарий» эволюции Вселенной.

Чтобы убедиться в этом, оценим критическую плот­ность вещества, начиная с которой «пульсирующий» сце­нарий эволюции сменяется «монотонным». Такую оцен­ку, хотя и достаточно грубую, можно произвести на осно­вании классической механики, без привлечения общей теории относительности. Из современной астрофизики нам потребуется только закон Хаббла.

Вычислим энергию некоторой галактики, имеющей массу m, которая находится на расстоянии Lот «наблюда­теля». Энергия Е этой галактики складывает­ся из кинетической энергии Т = mv 2 /2 = mH 2 L 2 /2и потенциальной энергии U = -GMm/L, которая связана с грави­тационным взаимодействием галактики mс веществом массы М, находящимся внутри шара радиуса L(можно показать, что вещество, находящееся вне шара, не вносит вклада в потенциальную энергию). Выразив массу Мче­рез плотность р, М = 4πL 3 p/3и учитывая закон Хаббла, запишем выражение для энергии галактики:


Е = Т- G{4/3) πmpv 2 /H 2 = Т (1 – G8πp/3H 2).(1. 3)

Из этого выражения видно, что в зависимости от значения плотности р энергия Е может быть либо положительной (Е > 0), либо отрицательной (Е < 0). В первом случае рассматриваемая га­лактика обладает достаточной кинетической энергией, чтобы преодолеть гравитационное притяжение массы М иудалиться на бесконечность. Это соответствует неограниченному монотонному расши­рению Вселенной (модель «открытой» Вселенной). Во втором случае (Е < 0) расширение Вселенной в ка­кой-то момент прекратится и сменится сжатием (модель «замкнутой» Вселенной). Критическое значение плотности соответствует условию Е = 0, так что из (1.3) получаем

p K =3H 2 /8πG (1.4)

Подставив в это выражение известные значения Н= = 15 (км/с)/10 6 световых лет и G = 6,67х 10 -11 м 3 /кг-с 2 , получаем значение критической плотности р к = 10 -26 кг/м 3 . Таким образом, если бы Вселенная состояла только из обычного «видимого» вещества с плотностью р в = 3х 10 -28 кг/м 3 , то ее будущее было бы связано с неограниченным расширением. Однако, как было сказано выше, наличие «темной» материи и «темной» энергии с плотностью р т > р в может привести к пульсирующей эволюции Вселенной, когда период расширения сменяется периодом сжатия (коллапсом). Правда, в последнее время ученые все боль­ше приходят к мысли, что плотность всей материи во Все­ленной в точности равна критической. Почему это так? На этот вопрос ответа пока нет.



Рассказать друзьям