Расчет параметров уравнения тренда. Параметры уравнения тренда

💖 Нравится? Поделись с друзьями ссылкой

Для наглядной иллюстрации тенденций изменения цены применяется линия тренда. Элемент технического анализа представляет собой геометрическое изображение средних значений анализируемого показателя.

Рассмотрим, как добавить линию тренда на график в Excel.

Добавление линии тренда на график

Для примера возьмем средние цены на нефть с 2000 года из открытых источников. Данные для анализа внесем в таблицу:



Линия тренда в Excel – это график аппроксимирующей функции. Для чего он нужен – для составления прогнозов на основе статистических данных. С этой целью необходимо продлить линию и определить ее значения.

Если R2 = 1, то ошибка аппроксимации равняется нулю. В нашем примере выбор линейной аппроксимации дал низкую достоверность и плохой результат. Прогноз будет неточным.

Внимание!!! Линию тренда нельзя добавить следующим типам графиков и диаграмм:

  • лепестковый;
  • круговой;
  • поверхностный;
  • кольцевой;
  • объемный;
  • с накоплением.


Уравнение линии тренда в Excel

В предложенном выше примере была выбрана линейная аппроксимация только для иллюстрации алгоритма. Как показала величина достоверности, выбор был не совсем удачным.

Следует выбирать тот тип отображения, который наиболее точно проиллюстрирует тенденцию изменений вводимых пользователем данных. Разберемся с вариантами.

Линейная аппроксимация

Ее геометрическое изображение – прямая. Следовательно, линейная аппроксимация применяется для иллюстрации показателя, который растет или уменьшается с постоянной скоростью.

Рассмотрим условное количество заключенных менеджером контрактов на протяжении 10 месяцев:

На основании данных в таблице Excel построим точечную диаграмму (она поможет проиллюстрировать линейный тип):


Выделяем диаграмму – «добавить линию тренда». В параметрах выбираем линейный тип. Добавляем величину достоверности аппроксимации и уравнение линии тренда в Excel (достаточно просто поставить галочки внизу окна «Параметры»).


Получаем результат:


Обратите внимание! При линейном типе аппроксимации точки данных расположены максимально близко к прямой. Данный вид использует следующее уравнение:

y = 4,503x + 6,1333

  • где 4,503 – показатель наклона;
  • 6,1333 – смещения;
  • y – последовательность значений,
  • х – номер периода.

Прямая линия на графике отображает стабильный рост качества работы менеджера. Величина достоверности аппроксимации равняется 0,9929, что указывает на хорошее совпадение расчетной прямой с исходными данными. Прогнозы должны получиться точными.

Чтобы спрогнозировать количество заключенных контрактов, например, в 11 периоде, нужно подставить в уравнение число 11 вместо х. В ходе расчетов узнаем, что в 11 периоде этот менеджер заключит 55-56 контрактов.

Экспоненциальная линия тренда

Данный тип будет полезен, если вводимые значения меняются с непрерывно возрастающей скоростью. Экспоненциальная аппроксимация не применяется при наличии нулевых или отрицательных характеристик.

Построим экспоненциальную линию тренда в Excel. Возьмем для примера условные значения полезного отпуска электроэнергии в регионе Х:

Строим график. Добавляем экспоненциальную линию.


Уравнение имеет следующий вид:

y = 7,6403е^-0,084x

  • где 7,6403 и -0,084 – константы;
  • е – основание натурального логарифма.

Показатель величины достоверности аппроксимации составил 0,938 – кривая соответствует данным, ошибка минимальна, прогнозы будут точными.

Логарифмическая линия тренда в Excel

Используется при следующих изменениях показателя: сначала быстрый рост или убывание, потом – относительная стабильность. Оптимизированная кривая хорошо адаптируется к подобному «поведению» величины. Логарифмический тренд подходит для прогнозирования продаж нового товара, который только вводится на рынок.

На начальном этапе задача производителя – увеличение клиентской базы. Когда у товара будет свой покупатель, его нужно удержать, обслужить.

Построим график и добавим логарифмическую линию тренда для прогноза продаж условного продукта:


R2 близок по значению к 1 (0,9633), что указывает на минимальную ошибку аппроксимации. Спрогнозируем объемы продаж в последующие периоды. Для этого нужно в уравнение вместо х подставлять номер периода.

Например:

Период 14 15 16 17 18 19 20
Прогноз 1005,4 1024,18 1041,74 1058,24 1073,8 1088,51 1102,47

Для расчета прогнозных цифр использовалась формула вида: =272,14*LN(B18)+287,21. Где В18 – номер периода.

Полиномиальная линия тренда в Excel

Данной кривой свойственны переменные возрастание и убывание. Для полиномов (многочленов) определяется степень (по количеству максимальных и минимальных величин). К примеру, один экстремум (минимум и максимум) – это вторая степень, два экстремума – третья степень, три – четвертая.

Полиномиальный тренд в Excel применяется для анализа большого набора данных о нестабильной величине. Посмотрим на примере первого набора значений (цены на нефть).


Чтобы получить такую величину достоверности аппроксимации (0,9256), пришлось поставить 6 степень.

Зато такой тренд позволяет составлять более-менее точные прогнозы.

Лекция 4. ОСНОВНЫЕ ТИПЫ ТЕНДЕНЦИЙ И УРАВНЕНИЙ ТРЕНДА

В главе 2 было рассмотрено понятие о тенденции временного ряда, т.е. тенденции динамики развития изучаемого показате-ля. Задача данной главы состоит в том, чтобы рассмотреть ос-новные типы таких тенденций, их свойства, отражаемые с большей или меньшей степенью полноты уравнением линии тренда. Укажем при этом, что в отличие от простых систем ме-ханики тенденции изменения показателей сложных социальных, экономических, биологических и технических систем только с некоторым приближением отражаются тем или иным уравне-нием, линией тренда.

В данной главе рассматриваются далеко не все известные в математике линии и их уравнения, а лишь набор их сравнитель-но простых форм, который мы считаем достаточным для ото-бражения и анализа большинства встречающихся на практике тенденций временных рядов. При этом желательно всегда вы-бирать из нескольких типов линий, достаточно близко выра-жающих тенденцию, более простую линию. Этот «принцип простоты» обоснован тем, что чем сложнее уравнение линии тренда, чем большее число параметров оно содержит, тем при равной степени приближения труднее дать надежную оценку этих параметров по ограниченному числу уровней ряда и тем больше ошибка оценки этих параметров, ошибки прогнозиру-емых уровней.

4.1. Прямолинейный тренд и его свойства

Самым простым типом линии тренда является прямая ли-ния, описываемая линейным (т.е. первой степени) уравнением тренда:

Где - выровненные, т.е. лишенные колебаний, уровни тренда для лет с номером i;

а - свободный член уравнения, численно равный среднему выровненному уровню для момента или периода времени, принятого за начало отсчета, т.е. для

t = 0;

b - средняя величина изменения уровней ряда за единицу из-менения времени;

ti - номера моментов или периодов времени, к которым от-носятся уровни временного ряда (год, квартал, месяц, дата).

Среднее изменение уровней ряда за единицу времени - глав-ный параметр и константа прямолинейного тренда. Следова-тельно, этот тип тренда подходит для отображения тенденции примерно равномерных изменений уровней: равных в среднем абсолютных приростов или абсолютных сокращений уровней за равные промежутки времени. Практика показывает, что та-кой характер динамики встречается достаточно часто. Причи-на близких к равномерному абсолютных изменений уровней ряда состоит в следующем: многие явления, как, например, урожай-ность сельскохозяйственных культур, численность населения региона, города, сумма дохода населения, среднее потребление какого-либо продовольственного товара и др., зависят от боль-шого числа различных факторов. Одни из них влияют в сторо-ну ускоренного роста изучаемого явления, другие - в сторону замедленного роста, третьи - в направлении сокращения уров-ней и т.д. Влияние разнонаправленных и разноускоренных (за-медленных) сил факторов взаимно усредняется, частично взаимно погашается, а равнодействующая их влияний приобре-тает характер, близкий к равномерной тенденции. Итак, равно-мерная тенденция динамики (или застоя) - это результат сложения влияния большого количества факторов на изменение изучаемого показателя.

Графическое изображение прямолинейного тренда - прямая линия в системе прямоугольных координат с линейным (ариф-метическим) масштабом на обеих осях. Пример линейного тренда дан на рис. 4.1.

Абсолютные изменения уровней в разные годы не были точно одинаковыми, но общая тенденция сокращения численности занятых в народном хозяйстве очень хорошо отражает-ся прямолинейным трендом. Его параметры вычислены в гл. 5 (табл. 5.3).

Основные свойства тренда в форме прямой линии таковы:

Равные изменения за равные промежутки времени;

Если средний абсолютный прирост - положительная вели-чина, то относительные приросты или темпы прироста посте-пенно уменьшаются;

Если среднее абсолютное изменение - отрицательная вели-чина, то относительные изменения или темпы сокращения по-степенно увеличиваются по абсолютной величине снижения к предыдущему уровню;

Если тенденция к сокращению уровней, а изучаемая вели-чина является по определению положительной, то среднее изме-нение b не может быть больше среднего уровня а;

При линейном тренде ускорение, т.е. разность абсолютных изменений за последовательные периоды, равно нулю.

Свойства линейного тренда иллюстрирует табл. 4.1. Урав-нение тренда: = 100 +20 *ti.

Показатели динамики при наличии тенденции сокращения уровней приведены в табл. 4.2.

Таблица 4.1

Показатели динамики при линейном тренде к увеличению уровней = 100 +20 *ti.


Номер периода ti

Уровень



Темпы (цеп-ные), %

Ускоре-ние

1

120

+20

120,0

-

2

140

+20

116,7

0

3

160

+20

114,3

0

4

180

+20

112,5

0

5

200

+20

111,1

0

6

220

+20

110,0

0

Таблица 4.2

Показатели динамики при линейном тренде сокращения уровней: = 200 -20 *ti.


Номер периода ti

Уровень

Абсолютное изме-нение к предыду-щему периоду

Темп к предыдущему периоду, %

Ускоре-ние

1

180

-20

90,0

-

2

160

-20

88,9

0

3

140

-20

87,5

0

4

120

-20

85,7

0

5

100

-20

83,3

0

6

80

-20

80,0

0

^ 4.2. Параболический тренд и его свойства

Под названием параболического будем иметь в виду тренд, выраженный параболой II порядка с уравнением

=a+b*t+c*t 2 .

Параболы III порядка и более высоких порядков редко приме-нимы для выражения тенденции динамики и слишком сложны для получения надежных оценок параметров при ограничен-ной длине временного ряда. Прямую линию, с точки зрения ма-тематики, можно также считать одним из видов парабол - параболой I порядка, которая уже рассмотрена ранее.

Значения (смысл, сущность) параметров параболы II поряд-ка таковы: свободный член а - это средний (выровненный) уро-вень тренда на момент или период, принятый за начало отсчета времени, т.е. t = 0; b - это средний за весь период среднегодовой прирост, который уже не является константой, а изменяется рав-номерно со средним ускорением, равным 2 с, которое и служит константой, главным параметром параболы II порядка.

Следовательно, тренд в форме параболы II порядка при-меняется для отображения таких тенденций динамики, кото-рым свойственно примерно постоянное ускорение абсолютных изменений уровней. Процессы такого рода встречаются на практике гораздо реже, чем процессы с равномерным измене-нием, но, с другой стороны, любое отклонение процесса от строго равномерного прироста (или сокращения) уровней можно интерпретировать как наличие ускорения. Более того, существует строгое математическое правило: чем выше поря-док параболы, тем ближе линия тренда к уровням исходного временного ряда. Если это правило довести до крайнего пре-дела, то любой ряд из п уровней может быть точно отображен параболой (п -1)-го порядка! (Через любые две точки прохо-дит одна прямая, через три точки - одна парабола II порядка и т.д.) Такое «приближение» линии тренда к эмпирическому ряду, содержащему как тенденцию, так и колебания, нельзя считать достижением научного анализа. Напротив, применяя параболу более высокого порядка там, где сущность процес-са этого не требует, а только ради уменьшения остаточной суммы отклонений (или их квадратов) отдельных уровней от тренда, исследователь уходит от цели, смешивая тренд с коле-баниями.

ПараболаII порядка, как уравнение тренда, применяется к различным процессам, которые на некотором, как правило не-продолжительном, этапе развития имеют примерно постоян-ное ускорение абсолютного прироста уровней. Такими бывают рост населения отдельных городов или регионов, ускоренное увеличение объема продукции в фазе циклического подъема, как, например, динамика экспорта Японии в 1988-1995 гг. на рис. 4.2.

Рис. 4.2. Динамика экспорта Японии

Расчет уравнения этой параболы приведен в гл. 5. Основные свойства тренда в форме параболы II порядка та-ковы:

1) неравные, но равномерно возрастающие или равномерно убывающие абсолютные изменения за равные промежутки вре-мени;

2) парабола, рассматриваемая относительно ее математи-ческой формы, имеет две ветви: восходящую с увеличением уровней признака и нисходящую с их уменьшением. Но отно-сительно статистики по содержанию изучаемого процесса из-менений трендом, выражающим определенную тенденцию развития, чаще всего можно считать только одну из ветвей:

Либо восходящую, либо нисходящую. В особых, более конк-ретных, ситуациях мы не отрицаем возможности объединения обеих ветвей в единый тренд;

3) так как свободный член уравнения а как значение показа-теля в начальный момент (период) отсчета времени, как правило, величина положительная, то характер тренда определяется знаками параметров b и с:

А) при b >0 и с>0 имеем восходящую ветвь, т.е. тенденцию к ускоренному росту уровней;

Б) при b <0 и с<0 имеем нисходящую ветвь - тенденцию к ускоренному сокращению уровней;

В) при b > 0 и с<0 имеем либо восходящую ветвь с замедляю-щимся ростом уровней, либо обе ветви параболы, восходящую и нисходящую, если их по существу можно считать единым про-цессом;

Г) при b <0 и с>0 имеем либо нисходящую ветвь с замедляю-щимся сокращением уровней, либо обе ветви - нисходящую и восходящую, если их можно считать единой тенденцией;

4) при параболической форме тренда, в зависимости от со-отношений между его параметрами, цепные темпы изменений могут либо уменьшаться, либо некоторое время возрастать, но при достаточно длительном периоде рано или поздно темпы роста обязательно начинают уменьшаться, а темпы сокращения уровней при b <0 и с<0 обязательно начинают возрастать (по абсолютной величине относительного изменения).

Ввиду ограниченного объема учебника рассмотрим не все четыре случая параболических трендов, а лишь два первых (табл. 4.3 и 4.4).

Таблица 4.3

Показатели динамики при параболическом тренде,


Номер периода ti

Уровень

Абсолютное изменение



Ускоре-ние

1

122

+22

122,0

-

2

148

+26

121,3

+4

3

178

+30

120,3

+4

4

212

+34

119,1

+4

5

250

+38

117,9

+4

6

292

+42

116,8

+4

^ Таблица 4.4

Показатели динамики при параболическомтренде,


Номер перио-да

Уро-вень

Абсо-лютные

измене-ния


Цепные темпы, % к предыдущему периоду

Уско-рение

Цепное относи-тельное измене-ние, % к преды-дущему периоду

1

178

-22

89,0

-

-11,0

2

152

-26

85,4

-4

-14,6

3

122

-30

80,3

-4

-19,7

4

88

-34

72,1

-4

-27,9

5

50

-38

56,8

-4

-43,2

6

8

-42

16,0

-4

-84,0

В тех случаях, когда по существу изучаемого процесса до-пустимо считать единым трендом обе ветви параболы, пред-ставляет большой интерес решение задачи о нахождении того периода или момента времени, когда уровень тренда достигает максимума (когда b >0, с<0) или минимума (если b <0, с>0). Эк-стремальная точка параболы = а + bt + ct 2 достигается при ну-левом значении первой производной:

^ 4.3. Экспоненциальный тренд и его свойства

Экспоненциальным трендом называют тренд, выраженный уравнением: . Свобод-ный член экспоненты а равен выровненному уровню, т.е. уров-ню тренда в момент или период, принятый за начало отсчета времени, т.е. при t = 0. Основной параметр экспоненциального тренда k является постоянным темпом изменения уровней (цен-ным). Если k > 1, имеем тренд с возрастающими уровнями, при-чем это возрастание не просто ускоренное, а с возрастающим ускорением и возрастающими производными всех более высо-ких порядков. Если k < 1, то имеем тренд, выражающий тенден-цию постоянного, но замедляющегося сокращения уровней, причем замедление непрерывно усиливается. Экстремума экс-понента не имеет и при
стремится либо к
при k > 1, либо к 0 при k < 1.

Экспоненциальный тренд характерен для процессов, разви-вающихся в среде, не создающей никаких ограничений для рос-та уровня. Из этого следует, что на практике он может развиваться только на ограниченном промежутке времени, так как любая среда рано или поздно создает ограничения, любые ресурсы со временем исчерпаемы. Однако практика показала что, например, численность населения Земли на протяжении 1950-1985 гг. возрастала примерно по экспоненте со среднего-довым темпом роста k = 1,018 и за это время возросла вдвое - с 2,5 до 5 млрд. чел. (рис. 4.3). В настоящее время темп роста насе-ления постепенно уменьшается.

Экспоненциальный рост объема реализации и производства происходит при возникновении новых видов продукции и их освоении промышленностью: при появлении цветных телеви-зоров, видеомагнитофонов, пейджеров и т.п., но когда произ-водство начинает наполнять рынок, приближаться к спросу, экспоненциальный рост прекращается.

Рис. 4.3. Рост народонаселения Земли

Расчет экспоненциального тренда дан в гл. 5. Основные свойства экспоненциального тренда:

1. Абсолютные изменения уровней тренда пропорциональ-ны самим уровням.

2. Экспонента экстремумов не имеет: при k > 1 тренд стремит-ся к +, при k < 1 тренд стремится к нулю.

3. Уровни тренда представляют собой геометрическую про-грессию: уровень периода с номером t = т есть a * k m .

4. При k > 1 тренд отражает ускоряющийся неравномерно рост уровней, при k < 1 тренд отражает замедляющееся неравномерно уменьшение уровней. Поведение основных показателей дина-мики в этих случаях рассмотрено в табл. 4.5 и 4.6.

В табл. 4.5 и 4.6 в последней графе приведены редко приме-няемые показатели динамики III порядка: ускорение (или при-рост) ускорения и замедление ускорения. Эти абсолютные показатели даны для наглядного пояснения главного отличия экспоненциального тренда от парабол любого порядка: экспо-нента не имеет постоянных производных любого порядка по времени. Постоянен только цепной темп изменения.


Номер периода

Уровень

Абсолютные изменения (цепные)

Цепные темпы, % к предыдущему периоду

Ускорение

Прирост ускорения к предыдущему периоду

1

120,00

+20,00

120

-

-

2

144,00

+24,00

120

+4,00

-

3

172,80

+28,80

120

+4,80

+0,80

4

207,36

+34,56

120

+4,76

+0,96

5

248,83

+41,47

120

+6,81

+1,15

6

298,60

+49,77

120

+8,30

+1,39

Номер периода

Уровень

Абсолютные изменения (цепные)

Цепные темпы, % к предыдущему периоду

Ускорение

Замедление ускорения

1

160,00

40,00

80

-

-

2

128,0

-32,00

80

+8,00

-

3

102,40

-25,60

80

+6,40

-1,60

4

81,92

-20,48

80

+5,12

-1,28

5

65,54

-16,38

80

+4,10

-1,02

6

52,43

-13,11

80

+3,27

-0,83

Читатель может заинтересоваться и таким вопросом: как на-звать тенденцию динамики, при которой и темп изменения был бы непостоянен, а имел постоянное абсолютное или относи-тельное изменение, например, уравнение типа или и т.д. Подобные «гиперэкспоненты» не применяют-ся статистикой, ибо любой, сколь угодно быстрый, сколь угодно ускоряющийся рост может быть отображен обычной экспонентой - стоит лишь уменьшить период, за который происходит возрастание (или сокращение) уровней в k раз. По своему суще-ству экспоненциальное развитие процесса и есть предельно воз-можное, предельно благоприятное по условиям развития, так как оно осуществляется в среде, не ограничивающей развитие данного процесса. Но следует помнить, что это происходит толь-ко до определенного времени, так как каждая среда, каждый ре-сурс в природе ограничен. Единственный спорный в науке процесс, по которому до сих пор нет доказательства ограничен-ности его во времени, - это экспоненциальное замедляющееся расширение Вселенной. Ограничено ли оно и сменится ли со временем сжатием или будет продолжаться бесконечно, зави-сит от значения средней плотности вещества и излучения во Вселенной, которую пока науке установить не удалось, ибо не все формы существования вещества и полей науке извест-ны. Зато интересно знать, что самый фундаментальный про-цесс, охватывающий всю известную Вселенную, уже, по крайней мере, 12-15 млрд. лет развивается по экспоненте.

^ 4.4. Гиперболический тренд и его свойства

Из различных форм гипербол рассмотрим только наиболее простую:

Если основной параметр гиперболы b >0, то этот тренд вы-ражает тенденцию замедляющегося снижения уровней и при .. Таким образом, свободный член гиперболы - это предел, к которому стремится уровень тренда.

Такая тенденция наблюдается, например (рис. 4.4), при изу-чении процесса снижения затрат любого ресурса (труда, мате-риалов, энергии) на единицу данного вида продукции или ее себестоимости в целом. Затраты ресурса не могут стремиться к нулю, значит, экспонента не соответствует сущности процесса; нужно применить гиперболическую формулу тренда.

Если параметр b <0, то с возрастанием t , т.е. с течением вре-мени, уровни тренда возрастают и стремятся к величине а при .

Такой характер динамики присущ, например, показателям КПД двигателей или иных преобразователей энергии (трансфор-матор тока, фотоэлемент и т.п.). По мере развития научно-тех-нического прогресса эти КПД постепенно повышаются, но никогда не могут превысить определенного предела для каждо-го типа двигателя и не могут превысить 100% в принципе для любого преобразователя энергии. При расчете гиперболического тренда нельзя нумеровать года от середины ряда, так как значения 1/ti должны быть всегда положительными.

Основные свойства гиперболического тренда:

1. Абсолютный прирост или сокращение уровней, ускоре-ние абсолютных изменений, темп изменения - все эти показате-ли не являются постоянными. При b >0 уровни замедленно уменьшаются, отрицательные абсолютные изменения, а также положительные ускорения тоже уменьшаются, цепные темпы из-менения растут и стремятся к 100%.

Рис. 4.4. Динамика расхода условного топлива на производство электроэнергии (г на 1 кВт-ч) на электростанциях региона

2. При b <0 уровни замедленно возрастают, положительные абсолютные изменения, а также отрицательные ускорения и цеп-ные темпы роста замедленно уменьшаются, стремясь к 100%.

Как видим, гиперболический тренд описывает в любом слу-чае тенденцию такого процесса, показатели которого со време-нем затухают, т.е. происходит переход от движения к застою. Иллюстрацией этих свойств может служить табл. 4.7.

Таблица 4.7

Показатели динамики при гиперболическом тренде:


Номер периода

Уровень

Абсолютные изменения (цепные)

Цепные темпы, % к предыдущему периоду

Ускорение

1

200,0

-

-

-

2

150,0

-50,0

75,0

-

3

133,0

-16,7

88,9

+33,3

4

125,0

-8,3

93,8

+8,4

5

120,0

-5,0

96,0

+3,3

6

116,7

-3,3

97,2

+1,7

^ 4.5. Логарифмический тренд и его свойства

Если изучаемый процесс приводит к замедлению роста ка-кого-то показателя, но при этом рост не прекращается, не стремится к какому-либо ограниченному пределу, то гипербо-лическая форма тренда уже не подходит. Тем более не подходит парабола с отрицательным ускорением, по которой замедляю-щийся рост перейдет со временем в снижение уровней. В указан-ном случае тенденция изменения лучше всего отображается логарифмической формой тренда: = a + b ln .

Логарифмы возрастают значительно медленнее, чем сами числа (номера периодов ), но рост логарифмов неограничен. Подбирая начало отсчета периодов (моментов) времени, мож-но найти такую скорость снижения абсолютных изменений, ко-торая наилучшим образом отвечает фактическому временному ряду.

Примером тенденций, соответствующих логарифмическому тренду, может служить динамика рекордных достижений в спорте: известно, что увеличение на 1 см рекорда прыжка в вы-соту или снижение на 0,1 с времени бега на 200 или 400 м требует все больших и больших затрат времени, каждый рекорд дается все большим и большим трудом. В то же время нет и «вечных» рекордов, все спортивные достижения улучшаются, но медлен-нее и медленнее, т.е. по логарифмическому тренду. Нередко та-кой же характер динамики присущ на отдельных этапах развития динамике урожайности или валового сбора какой-то культуры в данном регионе, пока новое агротехническое достижение не при-даст снова тенденции ускорения, что иллюстрирует рис. 4.5.

Конечно, характер тенденции маскируется колебаниями, но видно, что рост валового сбора замедляется. Это показывают и средние уровни сбора чая:

За 1978-1983 гг. средний сбор равен 333 тыс. т;

За 1984-1989 гг. средний сбор равен 483 тыс. т, рост на 150 тыс.т;

За 1990-1994 гг. средний сбор равен 566 тыс. т, рост на 83 тыс.т.

На рис. 4.5 для убедительности нанесен и логарифмический тренд, расчет

Рис. 4.5. Динамика валового сбора чая в Китае

Которого дан в гл. 5. Заметны также 5-6-летние циклические колебания валового сбора чая.

Основные свойства логарифмического тренда:

1. Если b >0, то уровни возрастают, но с замедлением, а если b <0, то уровни тренда уменьшаются, тоже с замедлением.

2. Абсолютные изменения уровней по модулю всегда умень-шаются со временем.

3. Ускорения абсолютных изменений имеют знак, противо-положный самим абсолютным изменениям, а по модулю посте-пенно уменьшаются.

4. Темпы изменения (цепные) постепенно приближаются к 100% при .

Можно сделать общий вывод о том, что логарифмический тренд отражает, так же как и гиперболический тренд, посте-пенно затухающий процесс изменений. Различие состоит в том, что затухание по гиперболе происходит быстро при приближе-нии к конечному пределу, а при логарифмическом тренде зату-хающий процесс продолжается без ограничения гораздо медленнее.

^ 4.6. Логистический тренд и его свойства

Логистическая форма тренда подходит для описания такого процесса, при котором изучаемый показатель проходит полный цикл развития, начиная, как правило, от нулевого уровня, сна-чала медленно, но с ускорением возрастая, затем ускорение ста-новится нулевым в середине цикла, т.е. рост происходит по линейному тренду, затем, в завершающей части цикла, рост за-медляется по гиперболе по мере приближения к предельному значению показателя.

Примером такого цикла динамики может служить измене-ние доли грамотного населения в стране, например в России, с 1800 г. до наших дней, или изменение доли семей, имеющих те-левизоры, примерно с 1945 до 2000 г. в России, доли жилищ в городах, имеющих горячее водоснабжение или центральное ото-пление (процесс, еще не законченный). В некоторых зарубеж-ных программах для компьютеров логистическая кривая называется S-образной кривой.

Можно, конечно, логистическую тенденцию считать объе-динением трех разных по типу тенденций: параболической с ускоряющимся ростом на первом этапе, линейной - на втором и гиперболической с замедляющимся ростом - на третьем этапе. Но есть доводы и в пользу рассмотрения всего цикла развития как особого единого типа тенденции со сложными, переменными свойствами, но постоянным направлением из-менений в сторону увеличения уровней в рассмотренных нами примерах или уменьшения уровней, если взять противополож-ный процесс - сокращение доли неграмотных среди населе-ния, доли жилищ, не оборудованных газоснабжением или центральным отоплением, и т.д.

Рассмотрение таких временных рядов, как проявление еди-ной логистической тенденции, позволяет уже на первом этапе рассчитать всю траекторию развития, определить сроки пере-хода от ускоренного роста к замедленному, что чрезвычайно важно при планировании производства или реализации нового вида товара, спрос на который будет проходить все этапы логи-стической тенденции вплоть до насыщения рынка. Так, напри-мер, обеспеченность населения в России автомобилями в конце 1980-х годов находилась на начальном этапе логистической кри-вой, и это означало, что предстоит еще ряд лет или даже десяти-летий ускоренного роста спроса. В то же время обеспеченность фотоаппаратами уже достигла этапа замедления роста, и это означало, что расширять производство или импорт прежних типов фотоаппаратов не следует. Расширение их рынка возмож-но было только для принципиально новых типов фотоаппара-тов, насыщенность которыми еще находится в самом начале первого этапа.

В вышеописанном диапазоне изменения уровней, т.е. от нуля до единицы, уравнение логистического тренда имеет вид:

должно быть примерно равно -10. Чем больше , тем быст-рее будут снижаться уровни, например, при = -10; = 1, уже при = 20 уровни снизятся почти до нуля.

Если же диапазон изменения уровней ограничен не нулем и единицей, а любыми значениями, определяемыми исходя из су-щества задачи, обозначаемыми то формула логис-тического тренда принимает вид:

Как видно из табл. 4.8, абсолютные изменения нарастают до середины периода, затем уменьшаются. Все они положитель-ны. Ускорения сначала возрастают, а после середины периода снижаются, становятся отрицательными, но уменьшаются по мо-дулю. Сумма положительных и отрицательных ускорений при-ближенно равна нулю (если ряд продлить от - до +, то сумма их точно равна нулю). Темпы роста возрастают до конца пер-вой половины ряда, затем снижаются. Если ряд достаточно длин-ный, то темпы начинаются со 100 % и завершаются на 100%.

Таблица 4.8

Показатели динамики при логистическом тренде:


Номер периода

Уровень

Абсолютные изме-нения к предыдуще-му периоду

Ускоре-ние

Темп роста к предыдущему периоду, %

0

51,0

-

-

-

1

54,4

+3,4

-

106,7

2

67,9

+13,5

+10,1

124,8

3

106,6

+38,7

+25,2

157,0

4

159,7

+53,1

+14,4

149,8

5

188,6

+28,8

-24,2

118,1

6

197,3

+8,7

-20,2

104,6

7

199,4

+2,1

-6,6

101,1

При логистическом тренде со снижающимися уровнями по-казатели динамики изменяются в следующем порядке: отрица-тельные абсолютные изменения по модулю возрастают до середины ряда и снижаются к концу, стремясь к нулю при . Ускорения в первой половине периода отрицательные и по мо-дулю возрастающие; во второй половине периода ускорения положительные и уменьшающиеся в пределе до нуля. Темпы изменений все меньше 100%, в конце первой половины периода наименьшие, во второй половине возрастающие с замедлением до 100% в пределе. Графическое изображение логистического тренда приведено на рис. 5.2.

Наиболее часто тренд представляется линейной зависимостью исследуемой величины вида

где y – исследуемая переменная (например, производительность) или зависимая переменная;
x – число, определяющее позицию (второй, третий и т.д.) года в периоде прогнозирования или независимая переменная.

При линейной аппроксимации связи между двумя параметрами для нахождения эмпирических коэффициентов линейной функции используется наиболее часто метод наименьших квадратов. Суть метода состоит в том, что линейная функция «наилучшего соответствия» проходит через точки графика, соответствующие минимуму суммы квадратов отклонений измеряемого параметра. Такое условие имеет вид:

где n – объем исследуемой совокупности (число единиц наблюдений).

Рис. 5.3. Построение тренда методом наименьших квадратов

Значения констант b и a или коэффициента при переменной Х и свободного члена уравнения определяются по формуле:

В табл. 5.1 приведен пример вычисления линейного тренда по данным .

Таблица 5.1. Вычисление линейного тренда

Методы сглаживания колебаний.

При сильных расхождениях между соседними значениями тренд, полученный методом регрессии, трудно поддается анализу. При прогнозировании, когда ряд содержит данные с большим разбросом колебаний соседних значений, следует их сгладить по определенным правилам, а потом искать смысл в прогнозе. К методу сглаживания колебаний
относят: метод скользящих средних (рассчитывается n-точечное среднее), метод экспоненциального сглаживания. Рассмотрим их.

Метод «скользящих средних» (МСС).

МСС позволяет сгладить ряд значений с тем, чтобы выделить тренд. При использовании этого метода берется среднее (обычно среднеарифметическое) фиксированного числа значений. Например, трехточечное скользящее среднее. Берется первая тройка значений, составленная из данных за январь, февраль и март (10 + 12 + 13), и определяется среднее, равное 35: 3 = 11,67.

Полученное значение 11,67 ставится в центре диапазона, т.е. по строке февраля. Затем «скользим на один месяц» и берется вторая тройка чисел, начиная с февраля по апрель (12 + 13 + 16), и рассчитывается среднее, равное 41: 3 = 13,67, и таким приемом обрабатываем данные по всему ряду. Полученные средние представляют новый ряд данных для построения тренда и его аппроксимации. Чем больше берется точек для вычисления скользящей средней, тем сильнее происходит сглаживание колебаний. Пример из МВА построения тренда дан в табл. 5.2 и на рис. 5.4.

Таблица 5.2 Расчет тренда методом трехточечного скользящего среднего

Характер колебаний исходных данных и данных, полученных методом скользящего среднего, иллюстрирован на рис. 5.4. Из сравнения графиков рядов исходных значений (ряд 3) и трехточечных скользящих средних (ряд 4), видно, что колебания удается сгладить. Чем большее число точек будет вовлекаться в диапазон вычисления скользящей средней, тем нагляднее будет вырисовываться тренд (ряд 1). Но процедура укрупнения диапазона приводит к сокращению числа конечных значений и это снижает точность прогноза.

Прогнозы следует делать исходя из оценок линии регрессии, составленной по значениям исходных данных или скользящих средних.

Рис. 5.4. Характер изменения объема продаж по месяцам года:
исходные данные (ряд 3); скользящие средние (ряд 4); экспоненциальное сглаживание (ряд 2); тренд, построенный методом регрессии (ряд 1)

Метод экспоненциального сглаживания.

Альтернативный подход к сокращению разброса значений ряда состоит в использовании метода экспоненциального сглаживания. Метод получил название «экспоненциальное сглаживание» в связи с тем, что каждое значение периодов, уходящих в прошлое, уменьшается на множитель (1 – α).

Каждое сглаженное значение рассчитывается по формуле вида:

St =aYt +(1−α)St−1,

где St – текущее сглаженное значение;
Yt – текущее значение временного ряда; St – 1 – предыдущее сглаженное значение; α – сглаживающая константа, 0 ≤ α ≤ 1.

Чем меньше значение константы α , тем менее оно чувствительно к изменениям тренда в данном временном ряду.

Согласно формуле (9.29) параметры линейного тренда равны а = 1894/11 = 172,2 ц/га; b = 486/110 = 4,418 ц/га. Уравнение линейного тренда имеет вид:

у̂ = 172,2 + 4,418t , где t = 0 в 1987 г Это означает,что средний фактический и выравненный уровень, отнесенный к середине периода, т.е. к 1991 г., равен 172 ц с 1 ra a среднегодовой прирост составляет 4,418 ц/га в год

Параметры параболического тренда согласно (9.23) равны- b = 4,418; a = 177,75; с = -0,5571. Уравнение параболического тренда имеет вид у̃ = 177,75 + 4,418t - 0.5571t 2 ; t = 0 в 1991 г. Это означает, что абсолютный прирост урожайности замедляется в среднем на 2·0,56 ц/га в год за год. Сам же абсолютный прирост уже не является константой параболического тренда, а является средней величиной за период. В год, принятый за начало отсчета т.е. 1991 г., тренд проходит через точку с ординатой 77,75 ц/га; Свободный член параболического тренда не является средним уровнем за период. Параметры экспоненциального тренда вычисляются по формулам(9.32) и (9.33) lnа = 56,5658/11 = 5,1423; потенцируя, получаем а = 171,1; lnk = 2,853:110 = 0,025936; потенцируя, получаем k = 1,02628.

Уравнение экспоненциального тренда имеет вид: y̅ = 171,1·1,02628 t .

Это означает, что среднегодовой темп поста урожайности за период составил 102,63%. В точке принятК начало отсчета, тренд проходит точку с ординатой 171,1 ц/га.

Рассчитанные по уравнениям трендов уровни записаны в трех последних графах табл. 9.5. Как видно по этим данным. расчетные значения уровней по всем трем видам трендов различаются ненамного, так как и ускорение параболы, и темп роста экспоненты невелики. Существенное отличие имеет парабола - рост уровней с 1995 г. прекращается, в то время как при линейном тренде уровни растут и далее, а при экспоненте их ост ускоряется. Поэтому для прогнозов на будущее эти три тренда неравноправны: при экстраполяции параболы на будущие годы уровни резко разойдутся с прямой и экспонентой, что видно из табл. 9.6. В этой таблицепредставлена распечатка решения на ПЭВМ по программе «Statgraphics» тех же трех трендов. Отличие их свободных членов от приведенных выше объясняется тем, что программа нумерует года не от середины, а от начала, так что свободные члены трендов относятся к 1986 г., для которого t = 0. Уравнение экспоненты на распечатке оставлено в логарифмированном виде. Прогноз сделан на 5 лет вперед, т.е. до 2001 г.. При изменении начала координат (отсчета времени) в уравнении параболы меняется и средний абсолютной прирост, параметр b. так как в результате отрицательного ускорения прирост все время сокращается, а его максимум - в начале периода. Константой параболы является только ускорение.


В строке «Data» приводятся уровни исходного ряда; «Forecast summary» означает сводные данные для прогноза. В следующих строках - уравнения прямой, параболы, экспоненты - в логарифмическом виде. Графа ME означает среднее расхождение между уровнями исходного ряда и уровнями тренда (выравненными). Для прямой и параболы это расхождение всегда равно нулю. Уровни экспоненты в среднем на 0,48852 ниже уровней исходного ряда. Точное совпадение возможно, если истинный тренд - экспонента; в данном случае совпадения нет, но различие, мало. Графа МАЕ -это дисперсия s 2 - мера колеблемости фактических уровней относительно тренда, о чем сказано в п. 9.7. Графа МАЕ - среднее линейное отклонение уровней от тренда по модулю (см. параграф 5.8); графа МАРЕ - относительное линейное отклонение в процентах. Здесь они приведены как показатели пригодности выбранного вида тренда. Меньшую дисперсию и модуль отклонения имеет парабола: она за период 1986 - 1996 гг. ближе к фактическим уровням. Но выбор типа тренда нельзя сводить лишь к этому критерию. На самом деле замедление прироста есть результат большого отрицательного отклонения, т. е. неурожая в 1996 г.

Вторая половина таблицы - это прогноз уровней урожайности по трем видам трендов на годы; t = 12, 13, 14, 15 и 16 от начала отсчета (1986 г.). Прогнозируемые уровни по экспоненте вплоть до 16-го года ненамного выше,.чем по прямой. Уровни тренда-параболы - снижаются, все более расходясь с другими трендами.

Как видно в табл. 9.4, при вычислении параметров тренда уровни исходного ряда входят с разными весами - значениями t p и их квадратов. Поэтому влияние колебаний уровней на параметры тренда зависит от того, на какой номер года приходится урожайный либо неурожайный год. Если резкое отклонение приходится на год с нулевым номером (t i = 0 ), то оно никакого влияния на параметры тренда не окажет, а если попадет на начало и конец ряда, то повлияет сильно. Следовательно, однократное аналитическое выравнивание неполно освобождает параметры тренда от влияния колеблемости, и при сильных колебаниях они могут быть сильно искажены, что в нашем примере случилось с параболой. Для дальнейшего исключения искажающего влияния колебаний на параметры тренда следует применить метод многократного скользящего выравнивания.

Этот прием состоит в том, что параметры тренда вычисляются не сразу по всему ряду, а скользящим методом, сначала за первые т периодов времени или моментов, затем за период от 2-го до т + 1, от 3-го до (т + 2)-го уровня и т.п. Если число исходных уровней ряда равно п, а длина каждой скользящей базы расчета параметров равна т, то число таких скользящих баз t или отдельных значений параметров, которые будут по ним определены, составит:

L = п + 1 - т.

Применение методики скользящего многократного выравнивания рассматривать, как видно из приведенных расчетов, возможно только при достаточно большом числе уровней ряда, как правило 15 и более. Рассмотрим эту методику на примере данных табл. 9.4 -динамики цен на нетопливные товары развивающихся стран, что опять же дает возможность читателю участвовать в небольшом научном исследовании. На этом же примере продолжим и методику прогнозирования в разделе 9.10.

Если вычислять в нашем ряду параметры по 11 -летним периодам (по 11 уровням), то t = 17 + 1 - 11 = 7. Смысл многократного скользящего выравнивания в том, что при последовательных сдвигах базы расчета параметров на концах ее и в середине окажутся разные уровни с разными по знаку и величине отклонениями от тренда. Поэтому при одних сдвигах базы параметры будут завышаться, при других - занижаться, а при последующем усреднении значений параметров по всем сдвигам базы расчета произойдет дальнейшее взаимопогашение искажений параметров тренда колебаниями уровней.

Многократное скользящее выравнивание не только позволяет получить более точную и надежную оценку параметров тренда, но и осуществить контроль правильности выбора типа уравнения тренда. Если окажется, что ведущий параметр тренда, его константа при расчете по скользящим базам не беспорядочно колеблется, а систематически изменяет свою величину существенным образом, значит, тип тренда был выбран неверно, данный параметр константой не является.

Что касается свободного члена при многократном выравнивании, то нет необходимости и, более того, просто неверно вычислять его величину как среднюю по всем сдвигам базы, ибо при таком способе отдельные уровни исходного ряда входили бы в расчет средней с разными весами, и сумма выравненных уровней разошлась бы с суммой членов исходного ряда. Свободный член тренда - это средняя величина уровня за период, при условии отсчета времени от середины периода. При отсчете от начала, если первый уровень t i = 1, свободный член будет равен: a 0 = у̅ - b ((N-1)/2). Рекомендуется длину скользящей базы расчета параметров тренда выбирать не менее 9-11 уровней, чтобы в достаточной мере погасить колебания уровней. Если исходный ряд очень длинный, база может составлять до 0,7 - 0,8 его длины. Для устранения влияния долго-периодических (циклических) колебаний на параметры тренда, число сдвигов базы должно быть равно или кратно длине цикла колебаний. Тогда начало и конец базы будут последовательно «пробегать» все фазы цикла и при усреднении параметра по всем сдвигам его искажения от циклических колебаний будут взаимопогашаться. Другой способ - взять длину скользящей базы, равной длине цикла, чтобы начало базы и конец базы всегда приходились на одну и ту же фазу цикла колебаний.

Поскольку по данным табл. 9.4, уже было установлено, что тренд имеет линейную форму, проводим расчет среднегодового абсолютного прироста, т. е. параметра b уравнения линейного тренда скользящим способом по 11-летним базам (см. табл. 9.7). В ней же приведен расчет данных, необходимых для последующего изучения колеблемости в параграфе 9.7. Остановимся подробнее на методике многократного выравнивания по скользящим базам. Рассчитаем параметр b по всем базам:


В главе 2 было рассмотрено понятие о тенденции временного ряда, т.е. тенденции динамики развития изучаемого показате­ля. Задача данной главы состоит в том, чтобы рассмотреть ос­новные типы таких тенденций, их свойства, отражаемые с большей или меньшей степенью полноты уравнением линии тренда. Укажем при этом, что в отличие от простых систем ме­ханики тенденции изменения показателей сложных социальных, экономических, биологических и технических систем только с некоторым приближением отражаются тем или иным уравне­нием, линией тренда.

В данной главе рассматриваются далеко не все известные в математике линии и их уравнения, а лишь набор их сравнитель­но простых форм, который мы считаем достаточным для ото­бражения и анализа большинства встречающихся на практике тенденций временных рядов. При этом желательно всегда вы­бирать из нескольких типов линий, достаточно близко выра­жающих тенденцию, более простую линию. Этот «принцип простоты» обоснован тем, что чем сложнее уравнение линии тренда, чем большее число параметров оно содержит, тем при равной степени приближения труднее дать надежную оценку этих параметров по ограниченному числу уровней ряда и тем больше ошибка оценки этих параметров, ошибки прогнозиру­емых уровней.

4.1. Прямолинейный тренд и его свойства

Самым простым типом линии тренда является прямая ли­ния, описываемая линейным (т.е. первой степени) уравнением тренда:

где - выровненные, т.е. лишенные колебаний, уровни тренда для лет с номеромi;

а - свободный член уравнения, численно равный среднему выровненному уровню для момента или периода времени, принятого за начало отсчета, т.е. для

t = 0;

b - средняя величина изменения уровней ряда за единицу из­менения времени;

ti - номера моментов или периодов времени, к которым от­носятся уровни временного ряда (год, квартал, месяц, дата).

Среднее изменение уровней ряда за единицу времени - глав­ный параметр и константа прямолинейного тренда. Следова­тельно, этот тип тренда подходит для отображения тенденции примерно равномерных изменений уровней: равных в среднем абсолютных приростов или абсолютных сокращений уровней за равные промежутки времени. Практика показывает, что та­кой характер динамики встречается достаточно часто. Причи­на близких к равномерному абсолютных изменений уровней ряда состоит в следующем: многие явления, как, например, урожай­ность сельскохозяйственных культур, численность населения региона, города, сумма дохода населения, среднее потребление какого-либо продовольственного товара и др., зависят от боль­шого числа различных факторов. Одни из них влияют в сторо­ну ускоренного роста изучаемого явления, другие - в сторону замедленного роста, третьи - в направлении сокращения уров­ней и т.д. Влияние разнонаправленных и разноускоренных (за­медленных) сил факторов взаимно усредняется, частично взаимно погашается, а равнодействующая их влияний приобре­тает характер, близкий к равномерной тенденции. Итак, равно­мерная тенденция динамики (или застоя) - это результат сложения влияния большого количества факторов на изменение изучаемого показателя.

Графическое изображение прямолинейного тренда - прямая линия в системе прямоугольных координат с линейным (ариф­метическим) масштабом на обеих осях. Пример линейного тренда дан на рис. 4.1.

Абсолютные изменения уровней в разные годы не были точно одинаковыми, но общая тенденция сокращения численности занятых в народном хозяйстве очень хорошо отражает­ся прямолинейным трендом. Его параметры вычислены в гл. 5 (табл. 5.3).

Основные свойства тренда в форме прямой линии таковы:

Равные изменения за равные промежутки времени;

Если средний абсолютный прирост - положительная вели­чина, то относительные приросты или темпы прироста посте­пенно уменьшаются;

Если среднее абсолютное изменение - отрицательная вели­чина, то относительные изменения или темпы сокращения по­степенно увеличиваются по абсолютной величине снижения к предыдущему уровню;

Если тенденция к сокращению уровней, а изучаемая вели­чина является по определению положительной, то среднее изме­нение b не может быть больше среднего уровняа;

При линейном тренде ускорение, т.е. разность абсолютных изменений за последовательные периоды, равно нулю.

Свойства линейного тренда иллюстрирует табл. 4.1. Урав­нение тренда: = 100 +20 *ti.

Показатели динамики при наличии тенденции сокращения уровней приведены в табл. 4.2.

Таблица 4.1

Показатели динамики при линейном тренде к увеличению уровней = 100 +20 *ti.

Номер периода ti

Темпы (цеп­ные), %

Ускоре­ние

Таблица 4.2

Показатели динамики при линейном тренде сокращения уровней: = 200 -20 *ti.

Номер периода ti

Абсолютное изме­нение к предыду­щему периоду

Темп к предыдущему периоду, %

Ускоре­ние



Рассказать друзьям