Стоя́чая волна.

💖 Нравится? Поделись с друзьями ссылкой

1. Волны вдоль проводов . Любой участок двухпроводной линии обладает некоторой ёмкостью и индуктивностью. Поэтому любой участок такой линии обладает свойствами колебательного контура, а вся линия в целом может рассматриваться как система связанных колебательных контуров (рис.161).

Системы, подобные двухпроводной линии, называются распределёнными .

Пусть в какой-то точке бесконечной двухпроводной линии действует переменная гармоническая ЭДС. В результате по линии протекает переменный ток. Если скорость изменения ЭДС достаточно велика, то токи проводимости в проводах будут замыкаться токами смещения между ними (рис.162).

Но согласно первому уравнению Максвелла (Ф.19.3) эти токи смещения, то есть изменяющееся эл. поле E , вызывают появление магнитного поля B . Так как электрическое поле распространяется в проводнике с некоторой скоростью, то в рамках грубой наглядности можно сказать, что увеличивающаяся ЭДС на зажимах a и b вызывает появление первого токового кольца 1, а это токовое кольцо, согласно второму уравнению Максвелла (Ф.19.4) создаёт магнитное кольцо А . Это магнитное кольцо А создаёт, в свою очередь, новое вихревое кольцо электрического поля 2, а то – новое магнитное кольцо Б , и так далее. Каждый раз при создании нового кольца происходит уничтожение предыдущего. В результате вдоль проводов бежит импульс электромагнитной волны, несущий информацию о величине и направлении той ЭДС, которая была на зажимах а b в момент начала движения импульса.

Изменение электрического и магнитного полей в каждой точке пространства в любой момент времени совпадают по фазе между собой. Векторы E и B нормальны друг к другу и изменяются по гармоническому закону (рис.163).

, (22.1)

. (22.1)

Здесь v – фазовая скорость волны. Векторы E , B и v образуют правовращательную тройку векторов.

При малых частотах ω перенос электрического поля происходит, в основном, с помощью токов проводимости по проводам. Если же ω велика, то роль токов проводимости снижается, а перенос электрического поля происходит за счёт токов смещения. Электрические явления в этом случае в значительной степени определяются электромагнитными волнами.

При достаточно больших ω провода можно вообще убрать, электрическое поле будет распространяться в диэлектрической среде в виде электромагнитных волн.

2. Скин – эффект . (skin по англ. – кожа). Состоит в том, что быстропеременные токи текут по поверхности проводника, быстро уменьшаясь с глубиной.

Если по проводнику течёт постоянный ток, то его плотность во всех точках сечения проводника примерно одинакова.

На каждый заряд действует сила Лоренца, стремящаяся сместить его к центру провода (рис.164). При обычных токах в металлических проводниках эта сила невелика и не оказывает заметного влияния на плотность тока. И лишь при сильных разрядах в плазме эта сила приводит к сжатию плазменного шнура (пинч-эффект ).

Если ток в проводе переменный, то он генерирует переменное магнитное поле, а оно, в свою очередь, генерирует переменное вихревое электрическое поле. Рассмотрим механизм скин-эффекта при нарастании и убывании тока.

а . Ток нарастает . Нарастающая индукция магнитного поля B вызывает появление вихревого электрического поля E , которое у поверхности проводника направлено по току, а на оси проводника – противоположно току. В результате у поверхности ток усиливается, а центре – ослабляется (рис.165).

б . Ток убывает . В этом случае ослабевающая индукция B вызывает электрическое поле E , направленное противоположно первому случаю, то есть на оси – по току, а на поверхности – против тока (рис.166).

В обоих случаях вихревое эл. поле на оси проводника препятствует, а на поверхности – способствует изменениям тока. Поэтому на оси проводника переменный ток слабее, на поверхности – сильнее.


Амплитуды векторов E и B затухают с глубиной по экспоненциальному закону:

E = E 0 exp (-αx ), В = В 0 exp (-αx ). (22.3)

Здесь E 0 и В 0 – амплитудные векторы на поверхности проводника, x – глубина, отсчитываемая с поверхности, α – коэффициент затухания, , где ν – частота тока, g – удельная электропроводность проводника.

Чем больше частота тока ν , магнитная проницаемость проводника μ и его электропроводность g , тем больше затухание. С увеличением частоты ν толщина поверхностного слоя, по которому проходит ток, уменьшается. В результате сопротивление проводника возрастает. Поэтому с ростом ν роль токов проводимости уменьшается, а токов смещения – увеличивается.

Величина, обратная коэффициенту затухания, 1çα = δ есть глубина уменьшения амплитуды в е раз. При ν = 50 Гц для меди δ = 0,74 мм. Отсюда понятно, что линии многоканальной связи, работающей на ТВЧ, могут использовать не дешёвые стальные провода, а дорогие медные. Увеличение числа каналов линии связи требует увеличения частоты тока, а это приводит к недопустимо большому затуханию и в медных проводах. Практический путь к повышению пропускной способности линий связи состоит в замене металлических проводов оптическими световодами, позволяющими использовать для передачи информации электромагнитные волны сверхвысокой частоты.

3. Стоячие волны . Если проводящая линия ограничена в пространстве, то на её концах происходит отражение электромагнитных волн. При сложении отражённых и прямых волн возникают стоячие электромагнитные волны, в которых изменение величин Е и В уже не совпадает по фазе, поскольку при отражении одна из величин Е или В – обязательно меняет знак. В стоячей электромагнитной волне узлы электрического поля совпадают с пучностями магнитного поля, и наоборот (рис.167).

Условие существования стоячих волн: , (22.4)

где l – длина линии, λ – длина электромагнитной волны, k = 1,2,3,… - натуральное число.

Если измерить λ , то, зная частоту генератора ν , из условия υ = λν можно найти экспериментально скорость распространения электромагнитных волн.

4. Опыты Герца . В 1888-89 годах Генрих Герц выполнил серию экспериментов, в которых убедительно доказал справедливость электромагнитной теории Максвелла. Генератор электромагнитных колебаний был искровой колебательный контур.

Опыты Герца по созданию электромагнитных колебаний с помощью вибраторов и по приёму этих колебаний на расстоянии в пределах лабораторной комнаты с помощью резонаторов показали, что от вибратора распространяется ЭМ-волна, способная отражаться от металлической поверхности и возбуждающая в приёмной антенне–резонаторе – токи той же частоты, что и колебания в вибраторе (рис.168).

Герц показал, что электромагнитная волна поляризуется и интерферирует, а проходя через границы раздела разных диэлектрических сред преломляется в соответствии с законами оптики.

Все открытые явления полностью укладывались в рамки теории Максвелла и тем самым подтвердили её.


5. Скорость распространения электромагнитных волн находится из системы уравнений Максвелла. Впервые эту работу выполнил Максвелл, получивший для скорости v ЭМ-волны выражение: . Закон Максвелла (22.5)

Здесь - скорость света (ЭМ-волны) в вакууме.

Поскольку ε > 1, а μ даже для наиболее сильных диамагнетиков очень мало отличается от единицы, то в целом произведение ε μ > 1. Это значит, что скорость распространения ЭМ-волн в веществе всегда меньше скорости в вакууме v < c и зависит практически лишь от диэлектрических свойств среды.

Величину называют показателем преломления среды . В оптике закон Максвелла обычно записывают в виде: . У всех сред n > 1, в вакууме n = 1. (22.6)

Электромагнитные волны представляют собой полевую форму материи, так называемое поле излучения. Поле излучения в отличие от других форм материи не может находиться в состоянии покоя. Оно всегда движения, причём скорость его в пустоте не зависит от выбора системы отсчёта и может принимать лишь одно значение c » 3·10 8 м/с.

6. Дисперсия волн . Материальные параметры ε и μ являются константами лишь в случае статических полей или в случае, когда поле изменяется очень медленно. Если же поле изменяется быстро, так что время его изменения сравнимо с временем релаксации τ электрического молекулярного диполя (или элементарного магнитного диполя), то параметры ε и μ сложным образом зависит от частоты колебаний поля ν . В результате и скорость распространения электромагнитных волн в веществе зависит от частоты n .

Явление зависимости скорости распространения волны от частоты (или длины волны), называется дисперсией .

Если источник излучает электромагнитные волны разных частот, то эти волны распространяются в веществе с разными скоростями. При прохождении границы раздела сред с разными ε (величина μ практически не влияет), электромагнитные волны в зависимости от скорости v , а, следовательно, в зависимости от частоты ν преломляются на разные углы. В результате плоско-параллельный пучок, состоящий из смеси волн разных частот, диспергирует, то есть расщепляется в веер лучей (рис.169).

Наиболее заметно дисперсия проявляется в электромагнитных волнах высоких частот, включая диапазон частот видимого света. Поэтому законы взаимодействия электромагнитных волн с веществом изучаются, как правило, в оптике. Скорость распространения волн в радиодиапазоне может быть установлена экспериментально путём измерения расстояний между узлами или пучностями стоячих волн известной частоты на вибраторах.

7. Перенос энергии и импульса в ЭМ-волне . Электромагнитные волны, как и любой волновой процесс, переносят в пространстве энергию.

В случае упругих волн эта энергия слагается из потенциальной энергии деформации среды и кинетической энергии движения её частиц. Энергия же электромагнитных волн слагается в любой момент времени из энергии взаимосвязанных электрического и магнитного полей.

Энергия, переносимая электромагнитными волнами, как и в механике, определяется вектором плотности потока энергии S , то есть количеством энергии, которое переносится волновым процессом через единичную площадку σ , ориентированную перпендикулярно вектору скорости движения волнового фронта v в данный момент времени (рис.170), . (22.7)

Здесь w 0 – плотность энергии ЭМ-поля. Так как

, то . (22.8)

Вектор S можно представить через характеристики ЭМ-поля E и B . Как и в колебательном контуре средние энергии электрического и магнитного полей в ЭМ-волне одинаковы. Но поскольку оба поля Е и В изменяются в одной фазе, то одинаковы и мгновенные значения плотности энергии, то есть εε 0 E 2 = B 2 çμμ 0 . Если с учётом этого обстоятельства преобразовать выражение (22.8) (см., например, , §240, с.529), то для вектора S получается выражение: . Вектор Пойнтинга 1883, (22.9)

Электромагнитное поле обладает не только энергией, но массой и импульсом. Из формулы Эйнштейна W = mc 2 = w 0 V , где V – объём, получаем пространственную плотность распределения массы поля: Þ . (22.10)

Импульс единичного объёма электромагнитной волны есть . (22.11)

8. Поток энергии ЭМ-поля в проводнике . Найдём поток электромагнитной энергии, втекающий в единичный объём длинного цилиндрического провода, по которому протекает электрический ток i .

Вектор Пойнтинга на поверхности цилиндрического провода направлен по радиусу (рис.171). Поэтому его поток через основание цилиндра равен нулю, а через боковую поверхность есть . (22.10)

Из закона Ома j = gE Þ E = jçg , где j – плотность тока в проводнике, g – удельная электропроводность проводника. Индукция магнитного поля на поверхности длинного цилиндрического провода есть (формула 13.8) (22.11)

Ток, текущий по проводу, I = j ×pR 2 . Объём провода V = pR 2 l . Отсюда

Поток энергии в единичный объём проводника (22.13)

оказался в точности равен тепловой энергии, выделяющейся в единичном объёме проводника в соответствии с законом Джоуля-Ленца.

Итак, энергия,идущая на нагрев проводника, поступает в него через боковую поверхность в виде энергии электромагнитного поля из окружающего проводник пространства , а не вдоль оси провода, как это кажется на первый взгляд. В это пространство она поступает из тех участков цепи, где действует ЭДС источников тока.

9. Излучение элементарного диполя . Заряд, движущийся в проводнике с постоянной скоростью, создаёт постоянное магнитное поле B . Это поле имеет постоянное во времени значение во всех точках пространства. Вдоль прямой, по которой движется заряд, магнитное поле равно нулю. (См. магнитное поле элемента тока, §12, п.6).


Для того, чтобы заряд излучал, он должен двигаться ускоренно . Это ускоренное движение можно реализовать с помощью элементарного диполя . В отличие от рассмотренного в п.3 макродиполя, длина которого l соизмерима с длиной волны l и связана с ней соотношением l = kl / 2, где k = 1,2,3,…, длина элементарного диоля много меньше длины излучаемой им волны, l << l .

Примером элементарного диполя являются два металлических шара, заряжаемые от какого-либо генератора электрических колебаний (рис.172). Если генератор создаёт гармоническую ЭДС, то заряд на шарах изменяется также по гармоническому закону, q = q 0 sinwt , (22.14)

и между шарами протекает переменный ток

. (22.15)

Этот переменный ток представляет собой ускоренное движение зарядов вдоль оси ОY , поэтому в пространстве вокруг оси OY излучается электромагнитная волна.

Если расстояние r от диполя много больше длины l , то волновые поверхности приобретают форму сферы, сечение которой вдоль оси диполя показано на рис.173. Замкнутые кривые здесь представляют собой силовые линии вихревого электрического поля Е . Расстояние между соответственными точками таких замкнутых фигур вдоль по радиусу равно l /2.

Важнейшим примером элементарных диполей являются электроны внутри атомов. Круговое движение электронов можно разложить на два взаимно перпендикулярные линейные гармонические колебания, каждый из которых представляет элементарный диполь.

Глава 5. Электрические явления в атмосфере

Наиболее простой случай – плоскую электромагнитную волну – можно реализовать, используя двухпроводную линию W , к одному концу которой подключен генератор высокой частоты, индуктивно связанный с ней (рис.1).

Такая система носит название линии Лехера (по имени австрийского физика Э.Лехера, исследовавшего распространение в ней электромагнитных волн).

Расстояние между проводами линии должно быть весьма мало по сравнению с длиной волны, чтобы избежать заметного излучения электромагнитных волн в пространство. Длина же линии должна быть большой.

Если длина линии бесконечно велика, то в ней возникает бегущая плоская волна, причем основные процессы, происходят в пространстве, окружающем провода. Сами же провода линии играют вспомогательную роль, задавая определенное направление распространения волны. Электрический и магнитный векторы электромагнитного поля перпендикулярны проводам, вдоль которых волна распространяется (поперечная волна ), и их колебания совпадают по фазе:

где Е 0 , Н 0 – амплитуды колебаний напряженности электрического и магнитного поля соответственно; х – координата, отсчитываемая от начала линии в направлении распространения волны; ω = 2πf циклическая (круговая) частота ; k =ω/V= 2π/λ –волновое число , V – скорость распространения волны, f – частота колебаний, λ – длина волны.

При этом вектор напряженности электрического поля колеблется в плоскости, проходящей через провода линии, а вектор напряженности магнитного поля - перпендикулярно ей (рис.2).


Рисунок 2 Распределение электрического и магнитного полей в бегущей

электромагнитной волне

Если же линия имеет ограниченную длину, то на ее концах должны выполняться определенные граничные условия. Если концы обоих проводов свободны, то на этих концах должна обращаться в нуль напряженность магнитного поля Н (и сила электрического тока I ); если же линия закорочена, то есть на конце линии провода замкнуты перемычкой с пренебрежимо малым сопротивлением, то на этом конце должна быть равна нулю напряженность электрического поля Е (и напряжение между проводами U ).

Достигнув конца линии, волна отражается и бежит в обратном направлении. При наложении бегущей и отраженной волн в линии возникает стоячая волна , описываемая уравнением:

В стоячей волне в каждой точке совершаются колебания с амплитудой 2А coskx . Точки, в которых coskx = 0, и амплитуда колебаний в стоячей волне обращается в нуль, называются узлами . Точки, в которых coskx = ± 1, и амплитуда колебаний достигает максимального значения, называются пучностями . Узлы как бы разделяют пространство на автономные области, в которых совершаются независимые гармонические колебания. Передачи энергии от одной области к другой не происходит, поэтому волна и называется стоячей.

В стоячей электромагнитной волне можно выделить две стоячие волны – электрическую и магнитную:

Колебания электрического поля сдвинуты относительно колебаний магнитного поля по фазе на π/2, кроме того, пучности электрического поля совпадают с узлами магнитного поля, а узлы – с пучностями (рис.3).


Рисунок 3. Распределение электрического и магнитного полей в стоячей

электромагнитной волне

В ограниченной двухпроводной линии амплитуда стоячей волны будет максимальной, если частота генератора совпадает с одной из собственных частот линии. Это явление называется резонансом. Собственные частоты определяются соотношением:

где V – скорость распространения электромагнитной волны, а λ n - длина волны, зависящая от длины линии и условий на ее концах (рис.4). Как видно из рис.4, для линии, разомкнутой на обоих концах, длина линии должна быть равна или кратна половине длины волны (рис. 4а) (λ n = 2l /n ). Для линии, замкнутой на одном конце и разомкнутой на другом, на длине линии должно укладываться нечетное число четвертей длины волны (рис. 4б):

то есть λ n = 4l /(2n +1).


Рисунок 4 Распределение напряжения U и силы тока I для двух первых

собственных колебаний в двухпроводной линии:

а) разомкнутой на обоих концах;

б) замкнутой на одном конце

Еще до экспериментального исследования свойств электромагнитных волн Максвелл, исходя из построенной им теории электромагнитного поля, вычислил скорость их распространения. В вакууме она равна

где ε 0 = 8,85·10 -12 Ф/м – электрическая постоянная, μ 0 = 4π·10 -7 Гн/м – магнитная постоянная. Таким образом, теория Максвелла предсказала, что скорость распространения электромагнитных волн должна равняться скорости света, а факт совпадения скоростей явился одним из первых указаний на то, что свет имеет электромагнитную природу.

Исследуя стоячие волны в двухпроводной линии, можно определить скорость распространения электромагнитных волн экспериментально. Действительно, измерив длину стоячей волны и частоту генератора, можно найти скорость волны по формуле:

Для электромагнитных волн в воздухе V должно быть примерно равна скорости света в вакууме с .

Описание установки и метода

Устройство двухпроводной линии показано на рис.5 . Она состоит из двух туго натянутых параллельных проводов, подвешенных через изоляторы 1 к неподвижным опорам 2, которыми являются противоположные стены лаборатории. Вдоль линии перемещается металлическая перемычка М , замыкающая провода линии накоротко. К началу линии подводится напряжение от генератора G через петлю индуктивной связи ПС1 . Под действием этого напряжения в короткозамкнутой линии устанавливается стоячая электромагнитная волна. Распределение действующих значений тока I и напряжения U вдоль линии при резонансе показано в верхней части рис.5. На замкнутом конце линии всегда имеет место пучность тока и узел напряжения. Расстояние между двумя соседними пучностями равно λ/2.


Рисунок 5 Линия Лехера и распределение тока и напряжения вдоль линии

Перемещая перемычку вдоль линии, мы меняем ее длину l. При длине линии, соответствующей формуле (6), будет иметь место резонансная настройка. Задача измерения длины волны сводится к определению расстояния между положениями перемычки М при резонансных настройках.

Положение перемычки М , соответствующее настройке линии в резонанс можно определять по наибольшей яркости свечения лампочки HL , включенной в перемычку. Яркость свечения лампочки определяется силой тока I к на конце линии (в перемычке). При перемещении перемычки сила тока I к изменяется в соответствии с графиком, приведенным на рис.6.


Рисунок 6 Зависимость силы тока в перемычке от ее положения

При резонансе ток в перемычке резко возрастает; его амплитуда ограничивается сопротивлением перемычки и потерями в линии. Включение в перемычку лампочки HL увеличивает активное сопротивление перемычки. Это приводит к появлению в линии, наряду со стоячими, бегущих волн, что уменьшает резкость изменения тока вблизи максимумов и повышает погрешность измерений. С ламповыми генераторами погрешность измерений достигает 5 – 10 %.

Лучшие результаты достигаются при использовании стрелочного индикатора, состоящего из высокочастотного диода VD , фильтрующего конденсатора С и магнитоэлектрического измерителя напряжения И (см. рис. 5). Для регулировки чувствительности индикатора последовательно с измерительным прибором И включают переменный резистор R . Петлю связи индикатора ПС2 с генератором неподвижно закрепляют в начале линии. Резонанс характеризуется резким возрастанием амплитуды напряжения, что и фиксируется индикатором.

Порядок выполнения работы

1. Включить генератор G и дать ему прогреться в течение 5 – 10 мин.

2. Вращением барабана B установить перемычку М на первый от начала линии максимум. Настройка на резонанс оценивается по максимуму отклонения стрелки индикатора И . Лампочка HL перемычки при этом должна гореть наиболее ярко.

3. Совместить указатель нуля, расположенный позади барабана, с нулевым делением барабана.

4. Перемещая перемычку вдоль линии и отсчитывая число оборотов барабана, измерить расстояние L от первого до последнего на линии максимума (один оборот барабана соответствует перемещению перемычки на 1 м). Записать значение L в таблицу 1. Определить количество m полуволн, укладывающихся между первым и последним максимумом.

Например, между первым и пятым максимумами укладывается четыре полуволны (m = 4).

5. Повторить измерения по п.п. 2 – 4 еще четыре раза.

Таблица 1 Экспериментальные результаты

№ п/п L , м m

Похожая информация.


Стоячие волны возникают в результате интерференции двух монохроматических плоских волн с одинаковой частотой, распространяющихся в противоположных направлениях.

Пусть плоская монохроматическая волна отражается от поверхности, расположенной перпендикулярно направлению распространения волны. После отражения волновой вектор поменяет направление на противоположное и при этом вектор приобретет дополнительный сдвиг фазы (так как отражение происходит от оптически более плотной среды). Тогда для падающей и отраженной волн можно записать

Эти волны будут интерферировать, и по принципу суперпозиции для результирующей стоячей волны получим следующие уравнения:

Из формул (49.1) и (49.2) следует первое важное отличие стоячей волны от бегущей: в стоячей волне колебания векторов и сдвинуты по фазе на , т. е. в те моменты, когда напряженность электрического поля максимальна, напряженность магнитного поля равна нулю и наоборот (рис. 49.1). В бегущей волне колебания и происходят в фазе.

Как видно из выражений (49.1) и (49.2), амплитуда колебаний векторов и в стоячей волне в разных точках пространства оказывается различной. Точки, в которых амплитуда колебаний равна нулю, называются узлами стоячей волны. Точки, в которых амплитуда имеет максимальное значение, называются пучностями . Для электрического поля амплитуда равна нулю, если . Отсюда следует, что узлы находятся в точках с координатами

(49.3)

Пучности электрического поля расположены в точках, где , т. е.

(49.4)

Из этих выражений видно, что расстояние между смежными узлами (или пучностями) равно половине длины бегущей волны. Таким же образом легко убедиться, что узлы магнитного поля находятся в точках с координатами, определяемыми выражением (49.4), а пучности – выражением (49.3), т. е. в стоячей волне узлы электрического поля совпадают с пучностями магнитного поля и наоборот. При этом на отражающей поверхности находятся узел электрического поля и пучность магнитного. Если отражение происходит от оптически менее плотной среды, то сдвиг фазы на получит вектор и на отражающей поверхности будут пучность электрического поля и узел магнитного.

Из выражений (49.1) и (49.2) следует, что колебания во всех точках, расположенных между двумя соседними узлами, происходят в одной фазе. При переходе через узел фаза колебаний изменяется на . При этом фазовая поверхность не перемещается в пространстве, чем и объясняется само название стоячей волны.

Объемные плотности энергии электрического и магнитного полей и соответственно. Изменения энергии электрического и магнитного полей в стоячей волне происходят с удвоенной частотой и в противофазе. Это означает, что в стоячей волне происходит периодическое преобразование энергии электрического и магнитного полей так, что в моменты, когда энергия электрического поля максимальна, энергия магнитного поля равна нулю и наоборот. В этом тоже заключается существенное отличие стоячих волн от бегущих. Используя формулу (39.10), легко убедиться, что максимальные значения объемной плотности энергий электрического и магнитного полей равны. Для стоячей волны модуль вектора Пойнтинга , а его среднее за период колебаний значение равно нулю. Это означает, что стоячая волна не переносит энергию в пространстве.



Стоячие волны в видимом диапазоне длин волн впервые зарегистрировал Винер в 1890 г. Он установил перед зеркалом под небольшим углом прозрачную пластинку с нанесенным на нее фоточувствительным слоем (рис. 49.2) и после проявления обнаружил на ней чередующиеся темные и светлые полосы, центры которых соответствовали положению узлов и пучностей электрического поля. Опыт Винера явился одним из прямых доказательств электромагнитной природы света.

Упругие волны также могут образовывать стоячую волну. Наглядным примером стоячей упругой волны являются колебания струны с закрепленными краями. Их можно наблюдать на любом струнном музыкальном инструменте (гитара, арфа и др.).

Линия без потерь

Рассмотрим линию, в которой отсутствуют распределенные активные сопротивление и проводимость, т.е. R 0 = 0, и G 0 = 0. Такую линию называют идеальной или линией без потерь .

Строго говоря, линий без потерь не существует, однако их рассмотрение представляет большой интерес. В ряде случаев при высокой частоте величины R 0 и G 0 оказываются очень малыми по сравнению с реактивными погонным сопротивлением ωL 0 и проводимостью ωС 0 и ими можно пренебречь, что значительно упрощает использование ранее полученных результатов и в то же время обеспечивает достаточную точность решения практических задач, связанных с распределением напряжения и тока.

Для линии без потерь выражения для постоянной распространения и волнового сопротивления упрощаются и принимают вид:

т.е. постоянная распространения становится мнимой, а волновое сопротивление – вещественным. В соответствии с принятыми для этого случая обозначениями

Величины β и ρ являются вторичными параметрами линии без потерь. Для определения напряжения и тока в линии перепишем уравнения линии

. Если , то

В режиме короткого замыкания (U 2 = 0)

(30.3)

Исследуем характер изменения входного сопротивления при изменении расстояния х от конца линии до текущей точки.

В интервале значений βх от 0 до π/2 tgβx положителен и изменяется от 0 до ∞, поэтому Z вх.хх имеет емкостной характер (-j ) и по модулю изменяется от ∞ до 0, а Z вх.к.з. имеет индуктивный характер и изменяется от 0 до ∞ (рис. 30.1).

В интервале βх от π/2 до π tgβx изменяется от - ∞ до 0, поэтому Z вх.хх изменяется от 0 до ∞, имея индуктивный характер, а Z вх.к.з . от - ∞ до 0 и носит емкостной характер.

Таким образом, изменяя длину отрезка линии без потерь, можно создавать (имитировать) различные по величине индуктивные и емкостные сопротивления. Практически это свойство используют при высокой частоте в различных радиотехнических устройствах.

Например, отрезок короткозамкнутой на конце линии без потерь длиной в четверть длины волны имеет входное сопротивление равное бесконечности. Это позволяет применять этот отрезок при подвеске проводов в качестве изолятора (так называемый четвертьволновый изолятор).

Стоячие электромагнитные волны

Стоячие электромагнитные волны возникают в линиях без потерь при холостом ходе и коротком замыкании и чисто реактивных нагрузках. Стоячая электромагнитная волна представляет собой электромагнитную волну, полученную в результате наложения движущихся навстречу друг другу падающей и отраженной волн одинаковой интенсивности.


Стоячие волны напряжения и тока всегда сдвинуты по отношению друг к другу в пространстве и во времени.

Напряжение и ток в любой точке линии без потерь (считая х от конца линии)

. При холостом ходе (I 2 = 0)

. (30.4)

При коротком замыкании (U 2 = 0)

(30.5)

Перейдем от комплексов к мгновенным значениям, тогда при холостом ходе

, а при коротком замыкании

.

При возникновении стоячих волн электромагнитная энергия от начала к концу линии не передается. Однако на каждом отрезке длины линии, равном четверти длины волны, запасена некоторая электромагнитная энергия. Эта энергия периодически переходит из одного вида (энергии электрического поля) в другой (энергию магнитного поля). Причем, в моменты, когда ток равен нулю, напряжение максимально и, наоборот, в результате чего средняя за период мощность равна нулю.

Если энергия расходуется в приемнике (или линии), должны существовать бегущие волны напряжения и тока, обеспечивающие процесс передачи энергии вдоль линии.

Чтобы воспроизвести некоторые из опытов Герца и получить тем самым более подробное представление об электромагнитной волне, в настоящее время нет надобности обращаться к старинной «искровой» технике возбуждения волн. Мы уже знаем, как с помощью автоколебательных систем - генераторов с электронными лампами - была решена задача получения незатухающих электрических колебаний (§§ 30, 31). Существенно, что в случае незатухающего гармонического колебания излучаемая передатчиком энергия сконцентрирована на одной частоте, а не распределена по всему спектру, как это имеет место при излучении сильно затухающих колебаний. Благодаря этому приемник, настроенный в резонанс на эту частоту, поставлен в значительно более выгодные условия.

Для опытов целесообразно воспользоваться достаточно короткими электромагнитными волнами, чтобы размеры приборов - резонансных вибраторов, экранов, призм и т. п. - были не слишком велики. Наиболее удобны волны, имеющие длину несколько сантиметров, В настоящее время во многих школах имеется передающая и приемная аппаратура, работающая на трехсантиметровых волнах.

Современная радиотехника использует и миллиметровые и еще более короткие (субмиллиметровые) волны, но для описываемых ниже опытов столь малые длины волн неудобны. Эти опыты можно осуществить и с волнами метрового диапазона (например, когда длина резонансного вибратора составляет ). Однако сантиметровый и дециметровый диапазоны наиболее удобны: с приборами на длину волны опыты следует делать на открытом воздухе, на ровном открытом месте, так как в противном случае результаты искажаются из-за отражения радиоволн от окружающих предметов (прежде всего металлических: железные балки в здании, электропроводка, телеграфные провода и т. п.).

Перечислим некоторые из возможных опытов, предполагая, что генератор снабжен излучающим вибратором, а приемник - приемным вибратором.

Отражение, преломление, стоячие волны. В этих опытах излучающий и приемный вибраторы надо располагать параллельно друг другу, например оба вертикально.

При включении генератора гальванометр в приемнике показывает отклонение. Если между излучателем и приемником поставить теперь металлический экран (например, железный лист), размеры которого велики по сравнению с длиной волны (§ 41), то можно наблюдать образование тени: когда приемный вибратор заслонен листом, ток в гальванометре резко падает. При устранении экрана или при вынесении приемного вибратора из области тени ток опять возрастает (рис. 127).

Рис. 127. Образование тени. В нижней части рисунка расположение приборов показано в плане: 1 - генератор с излучающим вибратором, 2 - экран, 3 - приемник с индикатором

Тело человека также отбрасывает заметную тень: если кто-либо пройдет между излучающим и приемным вибраторами, ток в индикаторе упадет и вновь возрастет.

Взяв вместо металлического экрана лист картона, фанеры, толстую деревянную доску, вообще экран из какого-либо изолирующего материала, нетрудно убедиться, что они прозрачны для исследуемых электромагнитных волн.

Заслонив приемник от излучателя металлическим листом 1 (рис. 128), нетрудно наблюдать отражение электромагнитной волны от второго металлического листа 2. Передвигая лист 2 вдоль прямой , параллельной отрезку (излучатель - приемник), мы обнаружим, что наиболее сильный отклик (отклик индикатора) возникает тогда, когда лист 2 находится против середины отрезка и его плоскость параллельна . Мы убеждаемся, таким образом, в справедливости закона равенства угла падения и угла отражения (§ 40). Замена металлического листа 2 экраном из изолирующего материала показывает, что от такого экрана отражение получается очень слабое.

Рис. 128. Отражение электромагнитной волны: - угол падения, - угол отражения

Отражением от металла можно воспользоваться для того, чтобы получить направленное излучение в виде почти плоской волны. Для этого надо поместить излучающий вибратор в фокусе цилиндрического зеркала из металлического листа, согнутого по дуге параболы (рис. 129, а). Интенсивность плоской волны, выходящей из такого рефлектора, существенно больше, чем в ненаправленном излучении самого вибратора в отсутствие рефлектора. Таким же рефлектором можно снабдить и приемный вибратор (рис. 129, б), что повышает его чувствительность. Описанные выше опыты лучше производить поэтому с вибраторами, снабженными рефлекторами. Провода, идущие от излучающего вибратора к генератору, пропускаются через отверстие, размер которого одна - две длины волны, проделанное в рефлекторе. У приемного вибратора провода к гальванометру можно пропустить через маленькие отверстия в рефлекторе. Размеры рефлекторов должны быть в три - пять раз больше .

Рис. 129. Параболический рефлектор у излучающего вибратора и у приемного

Следующий опыт показывает, что электромагнитная волна, проходя из одного прозрачного материала в другой, испытывает преломление, т. е. изменяется направление ее распространения. Явление преломления волн на границе двух веществ также принадлежит к числу общеволновых явлений, но мы ранее не останавливались на нем, так как наблюдать его на звуковых или поверхностных волнах в воде не особенно просто. (Легче всего наблюдать и исследовать преломление на световых волнах, и в разделе «Геометрическая оптика» это явление рассматривается подробно).

Для опыта с преломлением электромагнитной волны длиной, например, надо изготовить из парафина или асфальта призму с преломляющим углом, равным примерно 30° (рис. 130). Размеры этой призмы должны быть велики по сравнению с . На рис. 131 показано, как меняется направление распространения волны вследствие преломления в такой призме. Если в отсутствие призмы наибольший отклик в приемном вибраторе получается в положении , то при наличии призмы волна преломляется и наибольший отклик получается в . Преломление происходит на двух гранях призмы: при переходе волны из воздуха в парафин и затем при ее выходе из парафина в воздух. Отклонение волны от первоначального направления распространения составляет (в зависимости от материала призмы и длины волны) .

Рис. 130. Призма из парафина или асфальта

Рис. 131. Преломление электромагнитной волны в призме

На рис. 132 изображена постановка опыта для получения стоячей электромагнитной волны. Плоский металлический экран ставится против рефлектора излучающего вибратора так, чтобы отраженная волна распространялась навстречу падающей. Если теперь на пути от рефлектора к экрану перемещать приемный вибратор, то ток в гальванометре будет поочередно то увеличиваться (пучности), то уменьшаться (узлы).

Рис. 132. Образование стоячей электромагнитной волны

Расстояние между двумя соседними пучностями или двумя соседними узлами равно, как мы знаем, (§ 47). Если нам заранее известна частота колебаний генератора, то, измерив указанным путем , мы можем но формуле

найти скорость распространения электромагнитной волны в воздухе. При самых точных измерениях такого рода она оказывается совпадающей со скоростью света.

В описанном опыте остался пока невыясненным вопрос о том, какие пучности и узлы регистрирует приемный вибратор - колебаний электрического ноля или колебаний магнитного поля. Ответ мы получим в следующем разделе.

Рис. 133. Наиболее сильный ток в индикаторе возникает только при вертикальном расположении приемного вибратора. При любом горизонтальном положении вибратора тока нет.

Поперечность электромагнитных волн. Радиопеленгация. Оставаясь на каком-то неизменном расстоянии от вертикального излучающего вибратора, повернем приемный вибратор из вертикального в любое горизонтальное положение. Мы увидим, что ток в индикаторе приемника падает при этом до нуля (рис. 133). Объяснить это можно только тем, что элкетрическое поле приходящей волны имеет вертикальное направление. Действительно, такое поле может перемещать заряды (вызывать ток) вдоль приемного вибратора, когда он вертикален, и не может этого делать, когда он горизонтален. Отсюда следует, что в описанном выше опыте со стоячей волной приемный вибратор выявлял узлы и пучности электрического поля.

Повторим такой же опыт, как на рис. 133, но возьмем вместо приемного вибратора проволочный виток. При этом получается следующее. Когда виток расположен в вертикальной плоскости, проходящей через излучающий вибратор, ток в нем есть. Но при всяком повороте витка на от указанной плоскости ток в нем исчезает (рис. 134).

Рис. 134. Наиболее сильный ток в приемном витке получается при его расположении, показанном слева. В двух других изображенных положения тока нет

Мы знаем, что ток в витке (или катушке) наводится переменным магнитным полем только в том случае, если это поле пронизывает виток. Следовательно, отсутствие тока при расположениях витка, показанных на рис. 134 посередине и справа, объясняется тем, что магнитное поле приходящей волны направлено горизонтально и перпендикулярно к направлению излучения. Действительно, при этом оно пронизывает виток в первом положении и не пронизывает в двух других.

Мы приходим, таким образом, к выводу, что напряженность и индукция электрического и магнитного полей в волне перпендикулярны друг к другу и к направлению распространения волны (рис. 135); при этом направление совпадает с направлением вибратора, а вектор лежит в плоскости, перпендикулярной к вибратору.

Рис. 135. Расположение векторов электрического и магнитного полей при вертикальном излучателе для волн, распространяющихся в горизонтальном направлении

Нами исследован здесь случай вертикального вибратора и горизонтального направления распространения волны. Исследование любых других направлений распространения показывает, что для всякого из них остается справедливым аналогичное расположение векторов и :1) оба они перпендикулярны к направлению распространения, а значит, и колебания их происходят перпендикулярно к этому направлению, т. е. электромагнитная волна поперечина; 2) вектор лежит в плоскостях, проходящих через излучающий вибратор, а вектор - перпендикулярно к этим плоскостям (рис 136).

Рис. 136. Электромагнитная волна поперечна

Поперечность колебаний является совершенно общим свойством всякой электромагнитной волны, не зависящим ни от выбора направления распространения, ни от характера излучателя. Таким же общим свойством является и взаимная перпендикулярность полей и в электромагнитной волне. Мы еще вернемся к этому вопросу при изучении световых волн.

Возвращаясь к рис.136, можно заметить следующее: если мы установили направления электрического и магнитного полей и , то мы найдем тем самым направление, по которому приходит волна. Другими словами, мы узнаем направление на излучатель волны из места, где производится прием. Направление электрического поля почти для всех применяемых в технике антенн вертикально. Установить же направление магнитного поля можно с помощью приемного витка (или катушки из нескольких витков – так называемой рамочной антенны). На этом основана радиопеленгация – определение направления из данного пункта на принимаемую радиостанцию.

Рис. 137 изображает переносной радиопеленгатор - приемник, снабженный рамочной антенной, которую можно поворачивать вокруг вертикальной оси. Такую антенну нетрудно изготовить собственными силами. Присоединив ее к обычному широковещательному ламповому приемнику (клеммы «антенна» и «земля»), можно произвести пеленгацию мощных радиостанций.

Рис. 137. Внешний вид переносного радиопеленгатора

Обычно при пеленгации рамочную антенну поворачивают в такое положение, при котором интенсивность приема проходит через нуль (это точнее, чем установка на максимальную интенсивность). При таком положении индукция магнитного поля волны лежит в плоскости антенны, а значит, направление на радиостанцию - это прямая, перпендикулярная к плоскости антенны. Прибор не указывает, по какую сторону от антенны находится на этой прямом пеленгуемая станция, но обычно это известно заранее.

Если направление на радиостанцию (пеленг) определено из двух пунктов, расстояние между которыми известно ( и на рис. 138), то, построив по известной стороне и двум углам треугольник, можно засечь радиостанцию, т. е. определить ее местонахождение.

Рис. 138. Пеленгация радиопередатчика из двух точек определяет его положение

Принцип, положенный в основу пеленгации, используется и для целей радионавигации - вождения кораблей и самолетов по определенному направлению, заданному специальными передатчиками (радиомаяками). На корабле или самолете ставится при этом специальный приемник с рамочной антенной - радиокомпас, показывающий отклонения от требуемого курса. Иногда сигналы, принимаемые радиокомпасом, используются для управления рулевыми механизмами, т. е. осуществляется автоматическое сохранение заданного курса (автопилот).



Рассказать друзьям