Взаимодействие с лигандами. Лиганды в биорегуляции

💖 Нравится? Поделись с друзьями ссылкой

Активный центр белка – это центр связывания белка с лигандом. На поверхности глобулы образуется участок, который может присоединять к себе другие молекулы называемые лигандами . Активный центр белка формируется из боковых групп аминокислот, сближенных на уровне третичной структуры. В линейной последовательности пептидной цепи они могут находиться на расстоянии значительно удаленном друг от друга. Белки проявляют высокую специфичность при взаимодействии с лигандом. Высокая специфичность взаимодействия белка с лигандом обеспечивается комплементарностью структуры активного центра белка структуре лиганда. Комплементарность – это пространственное и химическое соответствие взаимодействующих молекул. Центры связывания белка с лигандом часто располагаются между доменами (например, центр связывания трипсина с его лигандом имеет 2 домена разделенных бороздкой).

В основе функционирования белков лежит их специфическое взаимодействие с лигандами. 50000 индивидуальных белков, содержащих уникальные активные центры, способные связываться только со специфическими лигандами и, благодаря особенностям строения активного центра, проявлять свойственные им функции. Очевидно, в первичной структуре содержится информация о функции белков.

Четвертичная структура - это высший уровень структурной организации, возможный не у всех белков. Под четвертичной структурой понимают способ укладки в пространстве полипептидных цепей и формирование единого в структурном и функциональном отношениях макромолекулярного образования. Каждая отдельно взятая полипептидная цепь, получившая название протомера или субъединицы , чаще всего не обладает биологической активностью. Эту способность белок приобретает при определенном способе пространственного объединения входящих в его состав протомеров. Образовавшуюся молекулу принято называть олигомером (мультимером) .

Четвертичную структуру стабилизируют нековалентные связи, которые возникают между контактными площадками протомеров, которые взаимодействуют друг с другом по типу комплементарности.

К белкам, имеющим четвертичную структуру, относятся многие ферменты (лактатдегидрогеназа, глутаматдегидрогеназа и др.), а также гемоглобин, сократительный белок мышц миозин. Одни белки имеют небольшое число субъединиц 2 – 8, другие сотни и даже тысячи субъединиц. Например, белок вируса табачной мозайки имеет 2130 субъединиц.

Типичным примером белка, имеющего четвертичную структуру, является гемоглобин. Молекула гемоглобина состоит из 4 субъединиц, т. е. полипептидных цепей, каждая из которых связана с гемом, из них 2 полипептидные цепи называются -2афьла и -2бета Они различаются первичной структурой и длиной полипептидной цепи.

Связи, образующие четвертичную структуру менее прочные. Под влиянием некоторых агентов происходит разделение белка на отдельные субъединицы. При удалении агента субъединицы могут вновь объединиться и биологическая функция белка восстанавливается. Так при добавлении к раствору гемоглобина мочевины он распадается на 4 составляющие его субъединицы, при удалении мочевины структурная и функциональная роль гемоглобина восстанавливается.

Конец работы -

Эта тема принадлежит разделу:

Биохимия. Белки. Аминокислоты - структурные компоненты белков

Белки аминокислоты структурные компоненты белков.. белки.. белки это азотсодержащие высокомолекулярные органические соединения состоящие из аминокислот соединенных в цепи с..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Механизм действия ферментов
Согласно современным представлениям при взаимодействии фермента с субстратом условно можно выделить 3 стадии: 1 стадия характеризуется диффузией субстрата к фермен

Кислотно-основный катализ
В активном центре фермента содержатся группы кислотного и основного типа. Группы кислотного типа отщепляют Н+ и имеют отрицательный заряд. Группы основного типа присоединяют Н+ и имеют поло

А). Гипотеза Фишера
Согласно ей имеется строгое стерическое соответствие субстрата и активного центра фермента. По Фишеру, фермент - это жёсткая структура, а субстрат является как бы слепком его активного цент

Обмен углеводов
ОБМЕН УГЛЕВОДОВ 1. Основные углеводы животного организма, их биологическая роль. 2. Превращение углеводов в органах пищеварительной системы. 3. Биосинтез и распад

Биологическая роль углеводов
БИОЛОГИЧЕСКАЯ РОЛЬ УГЛЕВОДОВ: 1. ЭНЕРГЕТИЧЕСКАЯ. При окислении1 г углеводов до конечных продуктов (СО2 и Н2О) выделяется 4,1-ккал энергии. На долю углеводов приходится около 60-70

Превращение углеводов в пищеварительном тракте
ПРЕВРАЩЕНИЕ УГЛЕВОДОВ В ПИЩЕВАРИТЕЛЬНОМ ТРАКТЕ Основными углеводами пищи для организма человека являются: крахмал, гликоген, сахароза, лактоза. Поступивший с пищей крахма

Биосинтез и распад гликогена
БИОСИНТЕЗ И РАСПАД ГЛИКОГЕНА В ТКАНЯХ. ГЛИКОГЕНОВЫЕ БОЛЕЗНИ. Было установлено, что гликоген может синтезироваться практически во всех органах и тканях. Однако наибольшая его конце

Анаэробный гликолиз
В зависимости от функционального состояния организма, клетки органов и тканей могут находиться как в условиях достаточного снабжения кислородом, так и испытывать его недостаток, то


Аэробный гликолиз (гексозодифосфатный путь)
ГЕКСОЗОДИФОСФАТНЫЙ ПУТЬ. Это классический путь аэробного катаболизма углеводов в тканях протекает в цитоплазме до стадии образования пирувата и завершается в митохондриях с образование кон

Гексозомонофосфатный путь
ГЕКСОЗОМОНОФОСФАТНЫЙ ПУТЬ ПРЕВРАЩЕНИЯ ГЛЮКОЗЫ В ТКАНЯХ, ХИМИЗМ РЕАКЦИЙ. Окисление глюкозы по этому пути протекает в цитоплазме клеток и представлено двумя последовательными ветвям

Глюконеогенез
ГЛЮКОНЕОГЕНЕЗ Основными источниками глюкозы для организма человека являются: 1. углеводы пищи; 2. гликоген тканей; 3. глюконеогенез. ГЛЮКОНЕОГЕНЕЗ - это

Основные липиды организма человека их биологическая роль
ЛИПИДАМИ называются сложные органические вещества биологической природы нерастворимые в воде, но растворимые в органических растворителях. ЛИПИДЫ являются основным продуктом питания. Они п

Переваривание липидов, ресинтез жира
Переваривание липидов. Поступающие с пищей ЛИПИДЫ в ротовой полости подвергаются только механической переработке. ЛИПОЛИТИЧЕСКИЕ ферменты в ротовой полости не образуются. Переваривание жир

Липопротеины крови
ЛИПИДЫ являются нерастворимыми в воде соединениями, поэтому для их переноса кровью необходимы специальные переносчики, которые растворимы в воде. Такими транспортными формами являются ЛИПОПРОТЕИНЫ.

Окисление высших жирных кислот
Жировая ткань, состоящая из адипозоцитов, выполняет специфическую роль в липидном обмене. Около 65% массы жировой ткани приходится на долю отложенных в ней триацилглицеролов (ТАГ) - они представляю

Биосинтез вжк в тканях
Биосинтез ВЖК происходит в эндоплазматической сети клеток. Заменимые ВЖК (все предельные и непредельные, имеющих одну двойную связь) синтезируются в клетках из АЦЁТИЛ-КоА. Условиями для би

Обмен холестерина
Обмен холестерина. Холестерин является предшественником в синтезе стероидов: желчных кислот, стероидных гормонов, витамина D3.Холестерин является обязательным структурным компон

Переваривание белков
Переваривание белков в пищеварительном тракте Пищевые белки подвергаются гидролитическому расщеплению под действием ПРОТЕОЛИТИЧЕСКИХ ФЕРМЕНТОВ (класс – гидролазы, подкласс - пептидазы).

Гниение аминокислот, обезвреживание продуктов гниения
ГНИЕНИЕ АМИНОКИСЛОТ Аминокислоты, которые не подверглись всасыванию, поступают в толстую кишку, где подвергаются гниению. ГНИЕНИЕ АМИНОКИСЛОТ - это процесс распада аминокислот под действие

Метаболизм аминокислот
Метаболизм аминокислот Источниками аминокислот в клетке являются: 1. белки пищи после их гидролиза в органах пищеварения; 2. синтез заменимых аминокислот;

Пути обезвреживания аммиака
Аммиак образуется из аминокислот при распаде других азотсодержащих соединений (биогенных аминов, НУКЛЕОТИДОВ). Значительная часть аммиака образуется в толстой кишке при гниении. Он всасывается в кр

Регуляция обмена веществ
СИГНАЛЬНЫЕ МОЛЕКУЛЫ. Основные задачи регуляции метаболизма и клеточных функций: 1. внутриклеточное и межклеточное согласование обменных процессов; 2. исключение «холостых

Гормоны гипоталамуса
ГОРМОНЫ ГИПОТАЛАМУСА ГИПОТАЛАМУС является компонентом и своеобразным «выходным каналом» лимбической системы. Это отдел промежуточного мозга, контролирующий различные параметры гом

Гормоны гипофиза

Гормоны гипофиза
ГОРМОНЫ ГИПОФИЗА В гипофизе выделяют переднюю (аденогипофиз) и заднюю доли (нейрогипофиз). Гормоны аденогипофиза можно разделить на 3 группы в зави

Биосинтез йодтиронинов
Синтез йодтиронинов происходит в составе белка – тиреоглобулина, который находится в фолликулах щитовидной железы. Тиреоглобулин представляет собой гликопротеин, содержащий 115 остатков тирозина. П

Обмен липидов
В печени жировой ткани гормоны стимулируют липолиз. Указанные эффекты на обмен углеводов и липидов связывают с повышением чувствительности клеток к действию адреналина под влиянием тиреоидных гормо

Гипосекреция
В детском возрасте снижение секреции приводит к задержке физического и умственного развития (кретинизм). У взрослых тяжелым проявлением недостатка гормонов щитовидной железы является миксе

Гиперсекреция
Диффузный токсический зоб (базедова болезнь) наиболее распространенное заболевание, сопровождающееся повышенной продукцией йодтиронинов. При этом заболевании размеры щитовидной железы увеличены и р

Гормоны паращитовидных желез
Паратгормон синтезируется в паращитовидных железах и состоит из 84 аминокислотных остатков. Гормон хранится в секреторных гранулах. Секреция ПТГ регулируется уровнем кальция в крови: при сни

Гормоны половых желез
Гормоны половых желез По химической природе представляют собой стероиды. Выделяют: 1. Андрогены; 2. Эстрогены; 3. Прогестины.

Гормоны надпочечников
Гормоны надпочечников Надпочечники – железы внутренней секреции, в которых выделяют корковое и мозговое вещество. В корковом слое синтезируется гормоны стероидной природы, в мозгово

Гормоны поджелудочной железы
Гормоны поджелудочной железы Функции поджелудочной железы: · экзокринная; · эндокринная. Экзокринная функция заключается в синтезе и секреции пищеварительных фер

Экзаменационные вопросы
ФАРМАЦЕВТИЧЕСКИЙ ФАКУЛЬТЕТ (ЗАОЧНОЕ ОТДЕЛЕНИЕ) Экзаменационные вопросы по биологической химии для студентов 3 курса (6 семестр) 1. Биохимия, ее задачи. Связь биохимии с ф

КОНФИГУРАЦИЯ И КОНФОРМАЦИЯ БЕЛКОВОЙ МОЛЕКУЛЫ

Электронная микроскопия

Может быть использована для выяснения структуры белковых молекул с большой молекулярной массой – от 500.000 до 1.000.000 Да (дальтон). Дальтон (Да) и килодальтон (кДа) – единицы измерения массы белков. 1кДа=10 3 Да. 1 дальтон равен 1/16 массы атома кислорода (кислородная единица массы).

Из всего сказанного можно заключить, что пространственная организация белков очень сложна. В химии существует понятие - пространственная КОНФИГУРАЦИЯ - жестко закрепленное ковалентными связями пространственное взаимное расположение частей молекулы (например: принадлежность к L-ряду стереоизомеров или к D-ряду).

Для белков также используется понятие КОНФОРМАЦИЯ белковой молекулы - определенное, но не застывшее, не неизменное взаимное расположение частей молекулы . Так как конформация белковой молекулы формируется при участии слабых типов связей, то она является подвижной (способной к изменениям), и белок может изменять свою структуру. В зависимости от условий внешней среды молекула может существовать в разных конформационных состояниях, которые легко переходят друг в друга. Энергетически выгодными для реальных условий являются только одно или несколько конформационных состояний, между которыми существует равновесие. Переходы из одного конформационного состояния в другое обеспечивают функционирование белковой молекулы. Это обратимые конформационные изменения (встречаются в организме, например, при проведении нервного импульса, при переносе кислорода гемоглобином). При изменении конформации часть слабых связей разрушается, и образуются новые связи слабого типа.

Взаимодействие белка с каким-нибудь веществом иногда приводит к связыванию молекулы этого вещества молекулой белка. Этот явление известно как «сорбция» (связывание) . Обратный же процесс - освобождение другой молекулы от белковой называется «десорбция» .

Если для какой-нибудь пары молекул процесс сорбции преобладает над десорбцией, то это уже специфическая сорбция, а вещество, которое сорбируется, называется «лиганд» .

Виды лигандов:

1) Лиганд белка-фермента – субстрат.

2) Лиганд траспортного белка – транспортируемое вещество.

3) Лиганд антитела (иммуноглобулина) – антиген.

4) Лиганд рецептора гормона или нейромедиатора – гормон или нейромедиатор.

Белок может изменять свою конформацию не только при взаимодействии с лигандом, но и в результате любого химического взаимодействия. Примером такого взаимодействия может служить присоединение остатка фосфорной кислоты.

В природных условиях белки имеют несколько термодинамически выгодных конформационных состояний. Это нативные состояния (природные). Natura (лат.) – природа.

· 1 В неорганической химии

o 1.1 Номенклатура лигандов

o 1.2 Характеристики лигандов

§ 1.2.1 Электронное строение

§ 1.2.2 Дентатность

§ 1.2.3 Способы координации

· 2 Примечания

В неорганической химии

Чаще всего такое связывание происходит с образованием так называемой «координационной» донорно-акцепторной связи, где лиганды выступают в ролиоснования Льюиса, то есть являются донорами электронной пары. При присоединении лигандов к центральному атому химические свойства комплексообразователя и самих лигандов часто претерпевают значительные изменения.

Номенклатура лигандов [править | править вики-текст]

1. первым в названии соединения в именительном падеже называется анион, а затем в родительном - катион

2. в названии комплексного иона сначала перечисляются лиганды в алфавитном порядке, а затем центральный атом

3. центральный атом в нейтральных катионных комплексах называются русским названием, а в анионах корнем латинского названия с суффиксом «ат». После названия центрального атома указывается степень окисления.

4. число лигандов, присоединенных к центральному атому, указывается приставками «моно», «ди», «три», «тетра», «пента», и т. д.

Характеристики лигандов [править | править вики-текст]

Электронное строение [править | править вики-текст]

Собственно, важнейшая характеристика лиганда, позволяющая оценить и спрогнозировать его способности к комплексообразованию и саморазрушению D-орбитали - разрушения соединения в целом. В первом приближении включает в себя количество электронных пар, которые лиганд способен выделить на создание координационных связей и электроотрицательность донирующего атома или функциональной группы.

Дентатность [править | править вики-текст]

Число занимаемых лигандом координационных мест центрального атома (или атомов), называется дентатностью (отлат. dens, dent- - зуб ). Лиганды, занимающие одно координационное место, называются моно дентатными (например, N H 3), два - би дентатными (оксалат-анион [O -C(=O)-C(=O)-O ] 2−). Лиганды, способные занять большее количество мест, обычно обозначают как поли дентатные. Например, этилендиаминтетрауксусная кислота (EDTA), способная занять шесть координационных мест.

Кроме дентатности, существует характеристика, отражающая количество атомов лиганда, связанных с одним координационным местом центрального атома. В английской литературе обозначается словом hapticity и имеет номенклатурное обозначение η с соответствующим надстрочным индексом. Хотя устоявшегося термина в русском языке она, по-видимому, не имеет, в некоторых источниках можно встретить кальку «гаптность» . Как пример, можно привести циклопентадиенильный лиганд в металлоцентровых комплексах, занимающий одно координационное место (то есть, являющийся монодентатным) и связанный через все пять атомов углерода: η 5 - − .

Способы координации [править | править вики-текст]

Хелатный комплексEDTA 4−

Лиганды с дентатностью больше двух способны образовывать хелатные комплексы (греч. χηλή - клешня) - комплексы, где центральный атом включен в один или более циклов с молекулой лиганда. Такие лиганды называются хелатирующими . Как пример можно привести комплексы тетрааниона той же EDTA, обратив внимание, что несколько из четырёх связей M-O в нём могут формально являться ионными .

При образовани хелатных комплексов часто наблюдается хелатный эффект - большая их стабильность по сравнению с аналогичными комплексами не-хелатирующих лигандов. Он достигается за счет большего экранирования центрального атома от замещающих воздействий и энтропийного эффекта. Например, константа диссоциации аммиачного комплекса кадмия 2+ почти в 1500 раз меньше, чем комплекса с этилендиамином 2+ . Причина этого заключается в том, что при взаимодействии гидратированного иона кадмия(II) с этилендиамином две молекулы лиганда вытесняют четыре молекулы воды. При этом число свободных частиц в системе значительно возрастает, и энтропия системы возрастает (а внутренняя упорядоченность комплекса соответствено растёт). То есть причина хелатного эффекта - увеличение энтропии системы при замещении монодентатных лигандов полидентатнымии и, как следствие, снижение энергии Гиббса.

Порфириновый цикл

Среди хелатирующих лигандов можно выделить класс макроциклических лигандов - молекул с достаточным для помещения атома комплексообразователя размером внутрициклического пространства. Примером таких соединений могут служитьпорфириновые основания - основы важнейших биохимических комплексов, таких, как гемоглобин, хлорофилл ибактериохлорофилл. Также в качестве макроциклических лигандов могут выступать краун-эфиры, каликсарены и др.

Лиганды также могут являться мостиковыми, образуя связи между различными центральными атомами в би- или полиядерных комплексах. Мостиковые лиганды обозначаются греческой буквой μ (мю ).

ЛИГАНДЫ

АБВГДЕЖЗИКЛМНОПРСТУФХЦЧШЩЭЮЯ

ЛИГАНДЫ (от лат. ligo - связываю), нейтральные молекулы, ионы или радикалы, связанные с центр. атомомкомплексного соединения. Ими м. б. ионы (Н - , Наl - , NO 3 - , NCS - и др.), неорг. молекулы (Н 2 , С n , N 2 , Р n , О 2 , S n , СО, СО 2 , NH 3 , NO, SO 2 , NO 2 , COS и др.), орг. соед., содержащие элементы главных подгрупп V, VI, VII гр. периодич. системы или p-донорную ф-цию. Большая группа лигандов-биологически важные соед. (аминокислоты, пептиды,белки, пурины, порфирины, коррины, макролиды) и их синтетич. аналоги (краун-эфиры, криптанды), а такжеполимеры с донорными атомами и хелатообразующими группировками. Лиганды могут быть связаны с центр.атомом s-, p- и d-двухцентровыми или многоцентровыми связями. В случае образования двухцентровых связей в лигандах можно выделить донорные центры (обычно атомы N, О, S, Cl или кратные связи). Многоцентровое связывание осуществляется за счет p-системы ароматич. лигандов (бензол, циклопентадиенид-анион) или гетероароматич. лигандов (пиррол, тиофен, метилпиридины). Важнейшая количеств. характеристика донорно-акцепторной способности лигандов - дентатность, определяемая числом донорных центров лигандов, участвующих в координации. По этому признаку лиганды делятся на моно-, ди-, ... полидентатные. Координац. число комплексообразователя для монодентатных лигандов совпадает с их кол-вом, для прочих равно произведению числа лигандов на их дентатность. Природа лигандов определяет типы координац. соед. (аквакомплексы,амминокомплексы, ацидокомплексы, мол. аддукты, хелаты, p-комплексы и др.); от нее зависят св-ва, строение и реакц. способность комплексных соед. и возможность их практич. применения.

Лиганд - это обязательный компонент сложных белков

У сложных белков, кроме белковой цепи, имеется дополнительная небелковая группа - лиганд (лат. ligo - связываю), то есть молекула, связанная с белком. В случае если лиганд несет структурную и/или функциональную нагрузку, он называется простетической группой .

В роли лиганда могут выступать любые молекулы:

· молекулы, выполняющие в белке структурную функцию – липиды, углеводы, нуклеиновые кислоты, минеральные элементы, какие-либо другие органические соединения: гем в гемоглобине, углеводы в гликопротеинах, ДНК и РНК в нуклеопротеинах, медь в церулоплазмине,

· переносимые белками молекулы : железо в трансферрине, гемоглобин в гаптоглобине, гем в гемопексине,

· субстраты для ферментов – любые молекулы и даже другие белки.

Узнавание лиганда обеспечивается:

· комплементарностью структуры центра связывания белка структуре лиганда, иначе говоря, пространственным и химическим соответствием белка и лиганда. Они подходят друг к другу как ключ к замку, например, соответствие фермента и субстрата,

· иногда узнавание может зависеть от реакционной способности атома, к которому присоединяется лиганд. Например, связывание кислорода железом гемоглобина, или жирной кислоты с альбумином.

Функции лиганда в составе сложного белка разнообразны:

· изменяет свойства белков (заряд, растворимость, термолабильность), например, фосфорная кислота в фосфопротеинах или остатки моносахаридов в гликопротеинах,

· защищает белок от протеолиза вне и внутри клетки, например углеводная часть вгликопротеинах,

· в виде лиганда обеспечивается транспорт нерастворимых в воде соединений, например, перенос жиров липопротеинами,

· придает биологическую активность и определяет функцию белка, например, нуклеиновая кислота в нуклеопротеинах, гем в гемоглобине, углевод в рецепторных белках,

· влияет на проникновение через мембраны , внутриклеточную миграцию, сортировку и секрецию белков. Это выполняет, как правило, углеводный остаток.

Биологическая химия Лелевич Владимир Валерьянович

Функционирование белков

Функционирование белков

Каждый индивидуальный белок, имеющий уникальную первичную структуру и конформацию, обладает и уникальной функцией, отличающей его от всех остальных белков. Набор индивидуальных белков выполняет в клетке множество разнообразных и сложных функций.

Необходимое условие для функцинирования белков – присоединение к нему другого вещества, которое называют лигандом. Лигандами могут быть как низкомолекулярные вещества, так и макромолекулы. Взаимодействие белка с лигандом высокоспецифично, что определяется строением участка белка, называемого центром связывания белка с лигандом или активным центром.

Активный центр белков и избирательность связывания его с лигандом

Активный центр белков – определённый участок белковой молекулы, как правило, находящийся в её углублении, сформированный радикалами аминокислот, собранных на определённом пространственном участке при формировании третичной структуры и способный комплементарно связываться с лигандом. В линейной последовательности полипептидной цепи радикалы, формирующие активный центр, могут находиться на значительном расстоянии друг от друга.

Высокая специфичность связывания белка с лигандом обеспечивается комплементарностью структуры активного центра белка и структуры лиганда.

Под комплементарностью понимают пространственное и химическое соответствие взаимодействующих молекул. Лиганд должен обладать способностью входить и пространственно совпадать с конформацией активного центра. Это совпадение может быть неполным, но благодаря конформационной лабильности белка, активный центр способен к небольшим изменениям и «подгоняется» под лиганд. Кроме того, между функциональными группами лиганда и радикалами аминокислот, образующих активный центр, должны возникать связи, удерживающие лиганд в активном центре. Связи между лигандом и активным центром белка могут быть как нековалентными (ионными, водородными, гидрофобными), так и ковалентными.

Характеристика активного центра

Активный центр белка – относительно изолированный от окружающей белок среды участок, сформированный аминокислотными остатками. В этом участке каждый остаток, благодаря своему индивидуальному размеру и функциональным группам, формирует «рельеф» активного центра.

Уникальные свойства активного центра зависят не только от химических свойств формирующих его аминокислот, но и от их точной взаимной ориентации в пространстве. Поэтому даже незначительные нарушения общей конформации белка в результате точечных изменений его первичной структуры или условий окружающей среды могут привести к изменению химических и функциональных свойств радикалов, формирующих активный центр, нарушать связывание белка с лигандом и его функцию. При денатурации активный центр белков разрушается, и происходит утрата их биологической активности.

Часто активный центр формируется таким образом, что доступ воды к функциональным группам его радикалов ограничен, т.е. создаются условия для связывания лиганда с радикалами аминокислот.

Центр связывания белка с лигандом часто располагается между доменами. Например, протеолитический фермент трипсин, участвующий в гидролизе пептидных связей пищевых белков в кишечнике, имеет 2 домена, разделённых бороздкой. Внутренняя поверхность бороздки формируется аминокислотными радикалами этих доменов, стоящими в полипептидной цепи далеко друг от друга (Сер177, Гис40, Асп85).

Разные домены в белке могут перемещаться друг относительно друга при взаимодействии с лигандом, что облегчает дальнейшее функционирование белка. Основное свойство белков, лежащее в основе их функций – избирательность присоединения специфических лигандов к определённым участкам белковой молекулы.

Многообразие лигандов:

1. Лигандами могут быть неорганические (часто ионы металлов) и органические вещества, низкомолекулярные и высокомолекулярные вещества;

2. существуют лиганды, которые изменяют свою химическую структуру при присоединении к активному центру белка (изменения субстрата в активном центре фермента);

3. существуют лиганды, присоединяющиеся к белку только в момент функционирования (например, О 2 , транспортируемый гемоглобином), и лиганды, постоянно связанные с белком, выполняющие вспомогательную роль при функционировании белков (например, железо, входящее в состав гемоглобина).

Из книги Размножение собак автора Коваленко Елена Евгеньевна

Функционирование половой системы Деятельность половой системы регулируется гормонами - веществами белковой природы с высокой биологической активностью и избирательностью действия. Именно эти свойства гормонов обеспечивают гуморальную связь между органами,

Из книги Возрастная анатомия и физиология автора Антонова Ольга Александровна

4.5. Строение и функционирование спинного мозга Спинной мозг представляет собой длинный тяж длиной (у взрослого человека) около 45 см. Вверху он переходит в продолговатый мозг, внизу (в районе I–II поясничных позвонков) спинной мозг суживается и имеет форму конуса,

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

4.6. Строение и функционирование головного мозга

Из книги Недостающее звено автора Иди Мейтленд

Из книги Беседы о жизни автора Галактионов Станислав Геннадиевич

Генеалогическое древо (свидетельство белков) Генеалогическое древо (свидетельство белков)Различия в белках двух видов отражают эволюционные изменения этих видов после их отделения от общего предка. Анализ показывает, что между альбуминами кровяных сывороток шимпанзе

Из книги Эволюция [Классические идеи в свете новых открытий] автора

Глава 2. Молекулярная архитектура белков Не будем скрывать: покончив с первой главой, авторы (а возможно, и читатель) испытали некоторое облегчение. В конце концов цель ее заключалась лишь в том, чтобы дать читателю сведения, необходимые для понимания последующих глав,

Из книги Эволюция человека. Книга 1. Обезьяны, кости и гены автора Марков Александр Владимирович

Вселенная древних белков продолжает расширяться В 2010 году журнал Nature опубликовал интересную статью об эволюционном движении белков по ландшафтам приспособленности (Povolotskaya, Kondrashov, 2010). Авторы работы решили сравнить аминокислотные последовательности 572 древних белков,

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Изменения белков Те участки генома, которые кодируют белки, изменились на удивление мало. Различия в аминокислотных последовательностях белков у человека и шимпанзе составляют значительно менее 1 %, да и из этих немногочисленных различий большая часть либо не имеет

Из книги автора

Глава 2. Строение и функции белков Белки – высокомолекулярные азотсодержащие органические соединения, состоящие из аминокислот, соединенных в полипептидные цепи с помощью пептидных связей, и имеющие сложную структурную организацию.История изучения белковВ 1728 г.

Из книги автора

Уровни структурной организации белков Первичная структура – строго определенная линейная последовательность аминокислот в полипептидной цепочке.Стратегические принципы изучения первичной структуры белка претерпевали значительные изменения по мере развития и

Из книги автора

Посттрансляционные изменения белков Многие белки синтезируются в неактивном виде (предшественники) и после схождения с рибосом подвергаются постсинтетическим структурным модификациям. Эти конформационные и структурные изменения полипептидных цепей получили

Из книги автора

Глава 23. Обмен аминокислот. Динамическое состояние белков организма Значение аминокислот для организма в первую очередь заключается в том, что они используются для синтеза белков, метаболизм которых занимает особое место в процессах обмена веществ между организмом и

Из книги автора

Переваривание белков в желудочно-кишечном тракте Переваривание белков начинается в желудке под действием ферментов желудочного сока. За сутки его выделяется до 2,5 литров и он отличается от других пищеварительных соков сильно кислой реакцией, благодаря присутствию

Из книги автора

Расщепление белков в тканях Осуществляется с помощью протеолитических лизосомальных ферментов катепсинов. По строению активного центра выделяют цистеиновые, сериновые, карбоксильные и металлопротеиновые катепсины. Роль катепсинов:1. создание биологически активных

Из книги автора

Роль печени в обмене аминокислот и белков Печень играет центральную роль в обмене белков и других азотсодержащих соединений. Она выполняет следующие функции:1. синтез специфических белков плазмы: - в печени синтезируется: 100 % альбуминов, 75 – 90 % ?-глобулинов, 50 %

Из книги автора

Характеристика белков сыворотки крови Белки системы комплемента – к этой системе относятся 20 белков, циркулирующих в крови в форме неактивных предшественников. Их активация происходит под действием специфических веществ, обладающих протеолитической активностью.

В неорганической химии

Чаще всего такое связывание происходит с образованием так называемой «координационной» донорно-акцепторной связи , где лиганды выступают в роли основания Льюиса , то есть являются донорами электронной пары. При присоединении лигандов к центральному атому химические свойства комплексообразователя и самих лигандов часто претерпевают значительные изменения.

Номенклатура лигандов

  1. первым в названии соединения в именительном падеже называется анион, а затем в родительном - катион
  2. в названии комплексного иона сначала перечисляются лиганды в алфавитном порядке, а затем центральный атом
  3. центральный атом в нейтральных катионных комплексах называются русским названием, а в анионах корнем латинского названия с суффиксом «ат». После названия центрального атома указывается степень окисления.
  4. число лигандов, присоединенных к центральному атому, указывается приставками «моно», «ди», «три», «тетра», «пента», и т. д.

Характеристики лигандов

Электронное строение

Собственно, важнейшая характеристика лиганда, позволяющая оценить и спрогнозировать его способности к комплексообразованию и саморазрушению D-орбитали - разрушения соединения в целом. В первом приближении включает в себя количество электронных пар, которые лиганд способен выделить на создание координационных связей и электроотрицательность донирующего атома или функциональной группы .

Дентатность

Число занимаемых лигандом координационных мест центрального атома (или атомов), называется дентатностью (от лат. dens, dent- - зуб ). Лиганды, занимающие одно координационное место, называются моно дентатными (например, N H 3), два - би дентатными (оксалат-анион [O -C(=O)-C(=O)-O ] 2−). Лиганды, способные занять большее количество мест, обычно обозначают как поли дентатные. Например, этилендиаминтетрауксусная кислота (EDTA), способная занять шесть координационных мест.

Кроме дентатности, существует характеристика, отражающая количество атомов лиганда, связанных с одним координационным местом центрального атома. В английской литературе обозначается словом hapticity и имеет номенклатурное обозначение с соответствующим надстрочным индексом. Хотя устоявшегося термина в русском языке она, по-видимому, не имеет, в некоторых источниках можно встретить кальку «гаптность» . Как пример, можно привести циклопентадиенильный лиганд в металлоцентровых комплексах, занимающий одно координационное место (то есть, являющийся монодентатным) и связанный через все пять атомов углерода: η 5 - − .

Способы координации

Хелатный комплекс EDTA 4−

Лиганды с дентатностью больше двух способны образовывать хелатные комплексы (греч. χηλή - коготь) - комплексы, где центральный атом включен в один или более циклов с молекулой лиганда. Такие лиганды называются хелатирующими . Как пример можно привести комплексы тетрааниона той же EDTA, обратив внимание, что несколько из четырёх связей M-O в нём могут формально являться ионными .

При образовани хелатных комплексов часто наблюдается хелатный эффект - большая их стабильность по сравнению с аналогичными комплексами не-хелатирующих лигандов. Он достигается за счет большего экранирования центрального атома от замещающих воздействий и энтропийного эффекта. Например, константа диссоциации аммиачного комплекса кадмия 2+ почти в 1500 раз меньше, чем комплекса с этилендиамином 2+ . Причина этого заключается в том, что при взаимодействии гидратированного иона кадмия(II) с этилендиамином две молекулы лиганда вытесняют четыре молекулы воды. При этом число свободных частиц в системе значительно возрастает, и энтропия системы возрастает (а внутренняя упорядоченность комплекса соответствено растёт). То есть причина хелатного эффекта - увеличение энтропии системы при замещении монодентатных лигандов полидентатнымии и, как следствие, снижение энергии Гиббса .

Порфириновый цикл

Лиганды также могут являться мостиковыми, образуя связи между различными центральными атомами в би- или полиядерных комплексах. Мостиковые лиганды обозначаются греческой буквой μ (мю ).

Примечания



Рассказать друзьям